Defining parameters
| Level: | \( N \) | \(=\) | \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 828.g (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 69 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(288\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(828, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 156 | 8 | 148 |
| Cusp forms | 132 | 8 | 124 |
| Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(828, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 828.2.g.a | $8$ | $6.612$ | 8.0.\(\cdots\).6 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{7}q^{5}-\beta _{5}q^{7}+\beta _{2}q^{11}+(-1-\beta _{3}+\cdots)q^{13}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(828, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(828, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(69, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(138, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(207, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(276, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(414, [\chi])\)\(^{\oplus 2}\)