Properties

Label 828.2.c.f.323.12
Level $828$
Weight $2$
Character 828.323
Analytic conductor $6.612$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [828,2,Mod(323,828)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("828.323"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(828, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 828.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,4,0,4,0,0,0,4,0,-8,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.61161328736\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 7 x^{10} + 20 x^{9} + 49 x^{8} - 382 x^{7} - 235 x^{6} + 2192 x^{5} + 668 x^{4} + \cdots + 1516 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 323.12
Root \(-1.64216 + 2.25841i\) of defining polynomial
Character \(\chi\) \(=\) 828.323
Dual form 828.2.c.f.323.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.38078 + 0.305697i) q^{2} +(1.81310 + 0.844199i) q^{4} +0.474164i q^{5} -1.17248i q^{7} +(2.24542 + 1.71991i) q^{8} +(-0.144950 + 0.654715i) q^{10} +4.48358 q^{11} -1.65813 q^{13} +(0.358422 - 1.61893i) q^{14} +(2.57466 + 3.06123i) q^{16} -3.66369i q^{17} +6.80758i q^{19} +(-0.400289 + 0.859706i) q^{20} +(6.19084 + 1.37062i) q^{22} +1.00000 q^{23} +4.77517 q^{25} +(-2.28951 - 0.506885i) q^{26} +(0.989803 - 2.12582i) q^{28} -2.70023i q^{29} -2.02533i q^{31} +(2.61922 + 5.01395i) q^{32} +(1.11998 - 5.05875i) q^{34} +0.555946 q^{35} -10.6773 q^{37} +(-2.08105 + 9.39976i) q^{38} +(-0.815519 + 1.06470i) q^{40} -0.885578i q^{41} +10.2545i q^{43} +(8.12918 + 3.78504i) q^{44} +(1.38078 + 0.305697i) q^{46} -0.864641 q^{47} +5.62530 q^{49} +(6.59345 + 1.45975i) q^{50} +(-3.00636 - 1.39979i) q^{52} -8.96892i q^{53} +2.12595i q^{55} +(2.01655 - 2.63270i) q^{56} +(0.825453 - 3.72843i) q^{58} -6.86425 q^{59} -1.83341 q^{61} +(0.619137 - 2.79654i) q^{62} +(2.08382 + 7.72384i) q^{64} -0.786226i q^{65} -8.35780i q^{67} +(3.09289 - 6.64264i) q^{68} +(0.767638 + 0.169951i) q^{70} +3.52273 q^{71} -11.3549 q^{73} +(-14.7429 - 3.26401i) q^{74} +(-5.74695 + 12.3428i) q^{76} -5.25690i q^{77} +3.32649i q^{79} +(-1.45153 + 1.22081i) q^{80} +(0.270718 - 1.22279i) q^{82} -3.78125 q^{83} +1.73719 q^{85} +(-3.13475 + 14.1591i) q^{86} +(10.0675 + 7.71136i) q^{88} -15.3168i q^{89} +1.94412i q^{91} +(1.81310 + 0.844199i) q^{92} +(-1.19388 - 0.264318i) q^{94} -3.22791 q^{95} -13.9816 q^{97} +(7.76729 + 1.71964i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + 4 q^{4} + 4 q^{8} - 8 q^{10} + 12 q^{11} - 4 q^{13} - 12 q^{14} - 12 q^{16} + 20 q^{20} + 4 q^{22} + 12 q^{23} - 40 q^{25} + 8 q^{26} - 24 q^{28} + 44 q^{32} - 28 q^{34} + 40 q^{35} - 32 q^{37}+ \cdots - 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/828\mathbb{Z}\right)^\times\).

\(n\) \(415\) \(461\) \(649\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.38078 + 0.305697i 0.976358 + 0.216160i
\(3\) 0 0
\(4\) 1.81310 + 0.844199i 0.906550 + 0.422099i
\(5\) 0.474164i 0.212053i 0.994363 + 0.106026i \(0.0338128\pi\)
−0.994363 + 0.106026i \(0.966187\pi\)
\(6\) 0 0
\(7\) 1.17248i 0.443154i −0.975143 0.221577i \(-0.928880\pi\)
0.975143 0.221577i \(-0.0711205\pi\)
\(8\) 2.24542 + 1.71991i 0.793876 + 0.608080i
\(9\) 0 0
\(10\) −0.144950 + 0.654715i −0.0458373 + 0.207039i
\(11\) 4.48358 1.35185 0.675926 0.736970i \(-0.263744\pi\)
0.675926 + 0.736970i \(0.263744\pi\)
\(12\) 0 0
\(13\) −1.65813 −0.459883 −0.229941 0.973204i \(-0.573853\pi\)
−0.229941 + 0.973204i \(0.573853\pi\)
\(14\) 0.358422 1.61893i 0.0957923 0.432677i
\(15\) 0 0
\(16\) 2.57466 + 3.06123i 0.643664 + 0.765308i
\(17\) 3.66369i 0.888576i −0.895884 0.444288i \(-0.853457\pi\)
0.895884 0.444288i \(-0.146543\pi\)
\(18\) 0 0
\(19\) 6.80758i 1.56177i 0.624677 + 0.780883i \(0.285231\pi\)
−0.624677 + 0.780883i \(0.714769\pi\)
\(20\) −0.400289 + 0.859706i −0.0895073 + 0.192236i
\(21\) 0 0
\(22\) 6.19084 + 1.37062i 1.31989 + 0.292217i
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 4.77517 0.955034
\(26\) −2.28951 0.506885i −0.449010 0.0994084i
\(27\) 0 0
\(28\) 0.989803 2.12582i 0.187055 0.401741i
\(29\) 2.70023i 0.501421i −0.968062 0.250710i \(-0.919336\pi\)
0.968062 0.250710i \(-0.0806642\pi\)
\(30\) 0 0
\(31\) 2.02533i 0.363760i −0.983321 0.181880i \(-0.941782\pi\)
0.983321 0.181880i \(-0.0582183\pi\)
\(32\) 2.61922 + 5.01395i 0.463017 + 0.886349i
\(33\) 0 0
\(34\) 1.11998 5.05875i 0.192075 0.867569i
\(35\) 0.555946 0.0939720
\(36\) 0 0
\(37\) −10.6773 −1.75533 −0.877666 0.479273i \(-0.840900\pi\)
−0.877666 + 0.479273i \(0.840900\pi\)
\(38\) −2.08105 + 9.39976i −0.337592 + 1.52484i
\(39\) 0 0
\(40\) −0.815519 + 1.06470i −0.128945 + 0.168343i
\(41\) 0.885578i 0.138304i −0.997606 0.0691520i \(-0.977971\pi\)
0.997606 0.0691520i \(-0.0220293\pi\)
\(42\) 0 0
\(43\) 10.2545i 1.56379i 0.623410 + 0.781895i \(0.285747\pi\)
−0.623410 + 0.781895i \(0.714253\pi\)
\(44\) 8.12918 + 3.78504i 1.22552 + 0.570616i
\(45\) 0 0
\(46\) 1.38078 + 0.305697i 0.203585 + 0.0450725i
\(47\) −0.864641 −0.126121 −0.0630604 0.998010i \(-0.520086\pi\)
−0.0630604 + 0.998010i \(0.520086\pi\)
\(48\) 0 0
\(49\) 5.62530 0.803614
\(50\) 6.59345 + 1.45975i 0.932455 + 0.206440i
\(51\) 0 0
\(52\) −3.00636 1.39979i −0.416907 0.194116i
\(53\) 8.96892i 1.23198i −0.787756 0.615988i \(-0.788757\pi\)
0.787756 0.615988i \(-0.211243\pi\)
\(54\) 0 0
\(55\) 2.12595i 0.286664i
\(56\) 2.01655 2.63270i 0.269473 0.351809i
\(57\) 0 0
\(58\) 0.825453 3.72843i 0.108387 0.489566i
\(59\) −6.86425 −0.893650 −0.446825 0.894621i \(-0.647445\pi\)
−0.446825 + 0.894621i \(0.647445\pi\)
\(60\) 0 0
\(61\) −1.83341 −0.234744 −0.117372 0.993088i \(-0.537447\pi\)
−0.117372 + 0.993088i \(0.537447\pi\)
\(62\) 0.619137 2.79654i 0.0786305 0.355160i
\(63\) 0 0
\(64\) 2.08382 + 7.72384i 0.260477 + 0.965480i
\(65\) 0.786226i 0.0975194i
\(66\) 0 0
\(67\) 8.35780i 1.02107i −0.859858 0.510534i \(-0.829448\pi\)
0.859858 0.510534i \(-0.170552\pi\)
\(68\) 3.09289 6.64264i 0.375068 0.805538i
\(69\) 0 0
\(70\) 0.767638 + 0.169951i 0.0917503 + 0.0203130i
\(71\) 3.52273 0.418071 0.209035 0.977908i \(-0.432968\pi\)
0.209035 + 0.977908i \(0.432968\pi\)
\(72\) 0 0
\(73\) −11.3549 −1.32899 −0.664497 0.747291i \(-0.731354\pi\)
−0.664497 + 0.747291i \(0.731354\pi\)
\(74\) −14.7429 3.26401i −1.71383 0.379433i
\(75\) 0 0
\(76\) −5.74695 + 12.3428i −0.659221 + 1.41582i
\(77\) 5.25690i 0.599079i
\(78\) 0 0
\(79\) 3.32649i 0.374259i 0.982335 + 0.187129i \(0.0599184\pi\)
−0.982335 + 0.187129i \(0.940082\pi\)
\(80\) −1.45153 + 1.22081i −0.162286 + 0.136491i
\(81\) 0 0
\(82\) 0.270718 1.22279i 0.0298958 0.135034i
\(83\) −3.78125 −0.415046 −0.207523 0.978230i \(-0.566540\pi\)
−0.207523 + 0.978230i \(0.566540\pi\)
\(84\) 0 0
\(85\) 1.73719 0.188425
\(86\) −3.13475 + 14.1591i −0.338029 + 1.52682i
\(87\) 0 0
\(88\) 10.0675 + 7.71136i 1.07320 + 0.822034i
\(89\) 15.3168i 1.62357i −0.583954 0.811786i \(-0.698495\pi\)
0.583954 0.811786i \(-0.301505\pi\)
\(90\) 0 0
\(91\) 1.94412i 0.203799i
\(92\) 1.81310 + 0.844199i 0.189029 + 0.0880138i
\(93\) 0 0
\(94\) −1.19388 0.264318i −0.123139 0.0272623i
\(95\) −3.22791 −0.331176
\(96\) 0 0
\(97\) −13.9816 −1.41962 −0.709810 0.704393i \(-0.751219\pi\)
−0.709810 + 0.704393i \(0.751219\pi\)
\(98\) 7.76729 + 1.71964i 0.784615 + 0.173709i
\(99\) 0 0
\(100\) 8.65785 + 4.03119i 0.865785 + 0.403119i
\(101\) 16.8609i 1.67772i −0.544346 0.838861i \(-0.683222\pi\)
0.544346 0.838861i \(-0.316778\pi\)
\(102\) 0 0
\(103\) 1.99530i 0.196603i 0.995157 + 0.0983016i \(0.0313410\pi\)
−0.995157 + 0.0983016i \(0.968659\pi\)
\(104\) −3.72320 2.85184i −0.365090 0.279646i
\(105\) 0 0
\(106\) 2.74177 12.3841i 0.266304 1.20285i
\(107\) −5.01845 −0.485152 −0.242576 0.970132i \(-0.577992\pi\)
−0.242576 + 0.970132i \(0.577992\pi\)
\(108\) 0 0
\(109\) −6.47322 −0.620022 −0.310011 0.950733i \(-0.600333\pi\)
−0.310011 + 0.950733i \(0.600333\pi\)
\(110\) −0.649897 + 2.93547i −0.0619653 + 0.279886i
\(111\) 0 0
\(112\) 3.58922 3.01872i 0.339150 0.285242i
\(113\) 7.98937i 0.751576i 0.926706 + 0.375788i \(0.122628\pi\)
−0.926706 + 0.375788i \(0.877372\pi\)
\(114\) 0 0
\(115\) 0.474164i 0.0442160i
\(116\) 2.27953 4.89579i 0.211650 0.454563i
\(117\) 0 0
\(118\) −9.47801 2.09838i −0.872522 0.193171i
\(119\) −4.29559 −0.393776
\(120\) 0 0
\(121\) 9.10253 0.827503
\(122\) −2.53153 0.560467i −0.229194 0.0507423i
\(123\) 0 0
\(124\) 1.70978 3.67213i 0.153543 0.329767i
\(125\) 4.63503i 0.414570i
\(126\) 0 0
\(127\) 4.91699i 0.436313i −0.975914 0.218156i \(-0.929996\pi\)
0.975914 0.218156i \(-0.0700043\pi\)
\(128\) 0.516138 + 11.3019i 0.0456206 + 0.998959i
\(129\) 0 0
\(130\) 0.240347 1.08560i 0.0210798 0.0952138i
\(131\) 10.5541 0.922120 0.461060 0.887369i \(-0.347469\pi\)
0.461060 + 0.887369i \(0.347469\pi\)
\(132\) 0 0
\(133\) 7.98172 0.692103
\(134\) 2.55495 11.5403i 0.220714 0.996928i
\(135\) 0 0
\(136\) 6.30123 8.22653i 0.540326 0.705419i
\(137\) 1.58979i 0.135825i −0.997691 0.0679123i \(-0.978366\pi\)
0.997691 0.0679123i \(-0.0216338\pi\)
\(138\) 0 0
\(139\) 11.4587i 0.971915i 0.873983 + 0.485957i \(0.161529\pi\)
−0.873983 + 0.485957i \(0.838471\pi\)
\(140\) 1.00798 + 0.469329i 0.0851903 + 0.0396655i
\(141\) 0 0
\(142\) 4.86410 + 1.07689i 0.408187 + 0.0903702i
\(143\) −7.43437 −0.621693
\(144\) 0 0
\(145\) 1.28035 0.106328
\(146\) −15.6786 3.47116i −1.29757 0.287275i
\(147\) 0 0
\(148\) −19.3589 9.01374i −1.59130 0.740925i
\(149\) 4.11595i 0.337191i −0.985685 0.168596i \(-0.946077\pi\)
0.985685 0.168596i \(-0.0539232\pi\)
\(150\) 0 0
\(151\) 13.1481i 1.06998i −0.844859 0.534989i \(-0.820316\pi\)
0.844859 0.534989i \(-0.179684\pi\)
\(152\) −11.7084 + 15.2859i −0.949679 + 1.23985i
\(153\) 0 0
\(154\) 1.60702 7.25861i 0.129497 0.584915i
\(155\) 0.960340 0.0771363
\(156\) 0 0
\(157\) −4.52908 −0.361460 −0.180730 0.983533i \(-0.557846\pi\)
−0.180730 + 0.983533i \(0.557846\pi\)
\(158\) −1.01690 + 4.59314i −0.0808999 + 0.365411i
\(159\) 0 0
\(160\) −2.37743 + 1.24194i −0.187953 + 0.0981840i
\(161\) 1.17248i 0.0924041i
\(162\) 0 0
\(163\) 2.28292i 0.178812i −0.995995 0.0894062i \(-0.971503\pi\)
0.995995 0.0894062i \(-0.0284969\pi\)
\(164\) 0.747604 1.60564i 0.0583781 0.125379i
\(165\) 0 0
\(166\) −5.22107 1.15592i −0.405233 0.0897164i
\(167\) −8.56827 −0.663033 −0.331516 0.943449i \(-0.607560\pi\)
−0.331516 + 0.943449i \(0.607560\pi\)
\(168\) 0 0
\(169\) −10.2506 −0.788508
\(170\) 2.39868 + 0.531054i 0.183970 + 0.0407300i
\(171\) 0 0
\(172\) −8.65680 + 18.5923i −0.660075 + 1.41765i
\(173\) 23.6139i 1.79533i 0.440674 + 0.897667i \(0.354740\pi\)
−0.440674 + 0.897667i \(0.645260\pi\)
\(174\) 0 0
\(175\) 5.59877i 0.423227i
\(176\) 11.5437 + 13.7253i 0.870138 + 1.03458i
\(177\) 0 0
\(178\) 4.68228 21.1490i 0.350952 1.58519i
\(179\) 24.0655 1.79874 0.899370 0.437189i \(-0.144026\pi\)
0.899370 + 0.437189i \(0.144026\pi\)
\(180\) 0 0
\(181\) −11.5751 −0.860369 −0.430185 0.902741i \(-0.641552\pi\)
−0.430185 + 0.902741i \(0.641552\pi\)
\(182\) −0.594311 + 2.68440i −0.0440533 + 0.198981i
\(183\) 0 0
\(184\) 2.24542 + 1.71991i 0.165535 + 0.126793i
\(185\) 5.06278i 0.372223i
\(186\) 0 0
\(187\) 16.4265i 1.20122i
\(188\) −1.56768 0.729929i −0.114335 0.0532355i
\(189\) 0 0
\(190\) −4.45703 0.986761i −0.323347 0.0715872i
\(191\) −15.3632 −1.11164 −0.555822 0.831301i \(-0.687596\pi\)
−0.555822 + 0.831301i \(0.687596\pi\)
\(192\) 0 0
\(193\) −1.37290 −0.0988238 −0.0494119 0.998778i \(-0.515735\pi\)
−0.0494119 + 0.998778i \(0.515735\pi\)
\(194\) −19.3055 4.27414i −1.38606 0.306865i
\(195\) 0 0
\(196\) 10.1992 + 4.74887i 0.728516 + 0.339205i
\(197\) 9.80742i 0.698750i 0.936983 + 0.349375i \(0.113606\pi\)
−0.936983 + 0.349375i \(0.886394\pi\)
\(198\) 0 0
\(199\) 12.4427i 0.882038i −0.897498 0.441019i \(-0.854617\pi\)
0.897498 0.441019i \(-0.145383\pi\)
\(200\) 10.7223 + 8.21286i 0.758178 + 0.580737i
\(201\) 0 0
\(202\) 5.15432 23.2812i 0.362657 1.63806i
\(203\) −3.16596 −0.222207
\(204\) 0 0
\(205\) 0.419909 0.0293277
\(206\) −0.609958 + 2.75507i −0.0424978 + 0.191955i
\(207\) 0 0
\(208\) −4.26912 5.07593i −0.296010 0.351952i
\(209\) 30.5224i 2.11128i
\(210\) 0 0
\(211\) 4.32567i 0.297792i 0.988853 + 0.148896i \(0.0475719\pi\)
−0.988853 + 0.148896i \(0.952428\pi\)
\(212\) 7.57155 16.2615i 0.520016 1.11685i
\(213\) 0 0
\(214\) −6.92937 1.53412i −0.473682 0.104871i
\(215\) −4.86229 −0.331606
\(216\) 0 0
\(217\) −2.37465 −0.161202
\(218\) −8.93808 1.97884i −0.605363 0.134024i
\(219\) 0 0
\(220\) −1.79473 + 3.85457i −0.121001 + 0.259875i
\(221\) 6.07489i 0.408641i
\(222\) 0 0
\(223\) 25.3012i 1.69429i −0.531359 0.847147i \(-0.678319\pi\)
0.531359 0.847147i \(-0.321681\pi\)
\(224\) 5.87873 3.07097i 0.392789 0.205188i
\(225\) 0 0
\(226\) −2.44232 + 11.0315i −0.162461 + 0.733808i
\(227\) −25.4220 −1.68732 −0.843659 0.536879i \(-0.819603\pi\)
−0.843659 + 0.536879i \(0.819603\pi\)
\(228\) 0 0
\(229\) 21.1997 1.40091 0.700456 0.713695i \(-0.252980\pi\)
0.700456 + 0.713695i \(0.252980\pi\)
\(230\) −0.144950 + 0.654715i −0.00955774 + 0.0431707i
\(231\) 0 0
\(232\) 4.64416 6.06316i 0.304904 0.398066i
\(233\) 11.5905i 0.759322i 0.925126 + 0.379661i \(0.123959\pi\)
−0.925126 + 0.379661i \(0.876041\pi\)
\(234\) 0 0
\(235\) 0.409982i 0.0267442i
\(236\) −12.4456 5.79479i −0.810138 0.377209i
\(237\) 0 0
\(238\) −5.93126 1.31315i −0.384467 0.0851188i
\(239\) 18.2731 1.18199 0.590993 0.806677i \(-0.298736\pi\)
0.590993 + 0.806677i \(0.298736\pi\)
\(240\) 0 0
\(241\) 1.96823 0.126785 0.0633926 0.997989i \(-0.479808\pi\)
0.0633926 + 0.997989i \(0.479808\pi\)
\(242\) 12.5686 + 2.78261i 0.807939 + 0.178873i
\(243\) 0 0
\(244\) −3.32415 1.54776i −0.212807 0.0990853i
\(245\) 2.66731i 0.170408i
\(246\) 0 0
\(247\) 11.2879i 0.718229i
\(248\) 3.48339 4.54772i 0.221195 0.288781i
\(249\) 0 0
\(250\) −1.41691 + 6.39995i −0.0896135 + 0.404769i
\(251\) 0.00646928 0.000408337 0.000204169 1.00000i \(-0.499935\pi\)
0.000204169 1.00000i \(0.499935\pi\)
\(252\) 0 0
\(253\) 4.48358 0.281881
\(254\) 1.50311 6.78928i 0.0943134 0.425997i
\(255\) 0 0
\(256\) −2.74229 + 15.7632i −0.171393 + 0.985203i
\(257\) 15.1727i 0.946448i −0.880942 0.473224i \(-0.843090\pi\)
0.880942 0.473224i \(-0.156910\pi\)
\(258\) 0 0
\(259\) 12.5188i 0.777883i
\(260\) 0.663731 1.42551i 0.0411629 0.0884061i
\(261\) 0 0
\(262\) 14.5729 + 3.22637i 0.900319 + 0.199326i
\(263\) −11.4792 −0.707837 −0.353918 0.935276i \(-0.615151\pi\)
−0.353918 + 0.935276i \(0.615151\pi\)
\(264\) 0 0
\(265\) 4.25274 0.261244
\(266\) 11.0210 + 2.43999i 0.675740 + 0.149605i
\(267\) 0 0
\(268\) 7.05565 15.1535i 0.430992 0.925648i
\(269\) 22.0371i 1.34363i 0.740720 + 0.671814i \(0.234485\pi\)
−0.740720 + 0.671814i \(0.765515\pi\)
\(270\) 0 0
\(271\) 32.5653i 1.97820i 0.147232 + 0.989102i \(0.452963\pi\)
−0.147232 + 0.989102i \(0.547037\pi\)
\(272\) 11.2154 9.43275i 0.680035 0.571945i
\(273\) 0 0
\(274\) 0.485993 2.19514i 0.0293599 0.132614i
\(275\) 21.4099 1.29106
\(276\) 0 0
\(277\) 20.8770 1.25438 0.627188 0.778868i \(-0.284206\pi\)
0.627188 + 0.778868i \(0.284206\pi\)
\(278\) −3.50289 + 15.8219i −0.210089 + 0.948937i
\(279\) 0 0
\(280\) 1.24833 + 0.956177i 0.0746021 + 0.0571425i
\(281\) 18.1369i 1.08195i −0.841037 0.540977i \(-0.818055\pi\)
0.841037 0.540977i \(-0.181945\pi\)
\(282\) 0 0
\(283\) 8.17536i 0.485975i −0.970029 0.242987i \(-0.921873\pi\)
0.970029 0.242987i \(-0.0781274\pi\)
\(284\) 6.38705 + 2.97388i 0.379002 + 0.176467i
\(285\) 0 0
\(286\) −10.2652 2.27266i −0.606995 0.134385i
\(287\) −1.03832 −0.0612900
\(288\) 0 0
\(289\) 3.57735 0.210432
\(290\) 1.76789 + 0.391400i 0.103814 + 0.0229838i
\(291\) 0 0
\(292\) −20.5876 9.58581i −1.20480 0.560967i
\(293\) 7.65429i 0.447169i −0.974685 0.223584i \(-0.928224\pi\)
0.974685 0.223584i \(-0.0717758\pi\)
\(294\) 0 0
\(295\) 3.25478i 0.189501i
\(296\) −23.9749 18.3639i −1.39352 1.06738i
\(297\) 0 0
\(298\) 1.25823 5.68321i 0.0728874 0.329219i
\(299\) −1.65813 −0.0958922
\(300\) 0 0
\(301\) 12.0231 0.693000
\(302\) 4.01933 18.1546i 0.231286 1.04468i
\(303\) 0 0
\(304\) −20.8396 + 17.5272i −1.19523 + 1.00525i
\(305\) 0.869337i 0.0497781i
\(306\) 0 0
\(307\) 13.4496i 0.767612i 0.923414 + 0.383806i \(0.125387\pi\)
−0.923414 + 0.383806i \(0.874613\pi\)
\(308\) 4.43787 9.53127i 0.252871 0.543095i
\(309\) 0 0
\(310\) 1.32602 + 0.293573i 0.0753127 + 0.0166738i
\(311\) 6.22993 0.353267 0.176633 0.984277i \(-0.443479\pi\)
0.176633 + 0.984277i \(0.443479\pi\)
\(312\) 0 0
\(313\) 2.38737 0.134942 0.0674710 0.997721i \(-0.478507\pi\)
0.0674710 + 0.997721i \(0.478507\pi\)
\(314\) −6.25366 1.38453i −0.352914 0.0781333i
\(315\) 0 0
\(316\) −2.80822 + 6.03125i −0.157974 + 0.339284i
\(317\) 14.7728i 0.829720i 0.909885 + 0.414860i \(0.136170\pi\)
−0.909885 + 0.414860i \(0.863830\pi\)
\(318\) 0 0
\(319\) 12.1067i 0.677847i
\(320\) −3.66237 + 0.988071i −0.204733 + 0.0552349i
\(321\) 0 0
\(322\) 0.358422 1.61893i 0.0199741 0.0902194i
\(323\) 24.9409 1.38775
\(324\) 0 0
\(325\) −7.91786 −0.439204
\(326\) 0.697882 3.15221i 0.0386521 0.174585i
\(327\) 0 0
\(328\) 1.52311 1.98849i 0.0840999 0.109796i
\(329\) 1.01377i 0.0558910i
\(330\) 0 0
\(331\) 17.3959i 0.956164i 0.878315 + 0.478082i \(0.158668\pi\)
−0.878315 + 0.478082i \(0.841332\pi\)
\(332\) −6.85578 3.19213i −0.376260 0.175191i
\(333\) 0 0
\(334\) −11.8309 2.61929i −0.647357 0.143321i
\(335\) 3.96297 0.216520
\(336\) 0 0
\(337\) 18.5231 1.00902 0.504508 0.863407i \(-0.331674\pi\)
0.504508 + 0.863407i \(0.331674\pi\)
\(338\) −14.1538 3.13357i −0.769866 0.170444i
\(339\) 0 0
\(340\) 3.14970 + 1.46654i 0.170817 + 0.0795341i
\(341\) 9.08075i 0.491750i
\(342\) 0 0
\(343\) 14.8029i 0.799279i
\(344\) −17.6367 + 23.0256i −0.950909 + 1.24145i
\(345\) 0 0
\(346\) −7.21870 + 32.6056i −0.388080 + 1.75289i
\(347\) 30.1324 1.61759 0.808796 0.588090i \(-0.200120\pi\)
0.808796 + 0.588090i \(0.200120\pi\)
\(348\) 0 0
\(349\) 21.7858 1.16617 0.583084 0.812412i \(-0.301846\pi\)
0.583084 + 0.812412i \(0.301846\pi\)
\(350\) 1.71153 7.73066i 0.0914849 0.413221i
\(351\) 0 0
\(352\) 11.7435 + 22.4805i 0.625931 + 1.19821i
\(353\) 18.3588i 0.977140i 0.872525 + 0.488570i \(0.162481\pi\)
−0.872525 + 0.488570i \(0.837519\pi\)
\(354\) 0 0
\(355\) 1.67035i 0.0886530i
\(356\) 12.9304 27.7708i 0.685309 1.47185i
\(357\) 0 0
\(358\) 33.2291 + 7.35674i 1.75621 + 0.388816i
\(359\) −5.84979 −0.308740 −0.154370 0.988013i \(-0.549335\pi\)
−0.154370 + 0.988013i \(0.549335\pi\)
\(360\) 0 0
\(361\) −27.3431 −1.43911
\(362\) −15.9826 3.53846i −0.840028 0.185978i
\(363\) 0 0
\(364\) −1.64122 + 3.52488i −0.0860235 + 0.184754i
\(365\) 5.38410i 0.281816i
\(366\) 0 0
\(367\) 19.9655i 1.04219i 0.853499 + 0.521094i \(0.174476\pi\)
−0.853499 + 0.521094i \(0.825524\pi\)
\(368\) 2.57466 + 3.06123i 0.134213 + 0.159578i
\(369\) 0 0
\(370\) 1.54767 6.99057i 0.0804597 0.363423i
\(371\) −10.5158 −0.545955
\(372\) 0 0
\(373\) 9.60019 0.497079 0.248539 0.968622i \(-0.420049\pi\)
0.248539 + 0.968622i \(0.420049\pi\)
\(374\) 5.02152 22.6813i 0.259657 1.17282i
\(375\) 0 0
\(376\) −1.94148 1.48710i −0.100124 0.0766916i
\(377\) 4.47734i 0.230595i
\(378\) 0 0
\(379\) 35.6214i 1.82975i 0.403739 + 0.914874i \(0.367710\pi\)
−0.403739 + 0.914874i \(0.632290\pi\)
\(380\) −5.85252 2.72500i −0.300228 0.139789i
\(381\) 0 0
\(382\) −21.2132 4.69649i −1.08536 0.240293i
\(383\) 33.6092 1.71735 0.858676 0.512519i \(-0.171288\pi\)
0.858676 + 0.512519i \(0.171288\pi\)
\(384\) 0 0
\(385\) 2.49263 0.127036
\(386\) −1.89568 0.419692i −0.0964874 0.0213618i
\(387\) 0 0
\(388\) −25.3501 11.8033i −1.28696 0.599221i
\(389\) 21.5506i 1.09266i 0.837570 + 0.546330i \(0.183975\pi\)
−0.837570 + 0.546330i \(0.816025\pi\)
\(390\) 0 0
\(391\) 3.66369i 0.185281i
\(392\) 12.6312 + 9.67501i 0.637970 + 0.488662i
\(393\) 0 0
\(394\) −2.99810 + 13.5419i −0.151042 + 0.682230i
\(395\) −1.57730 −0.0793625
\(396\) 0 0
\(397\) −19.7043 −0.988931 −0.494466 0.869197i \(-0.664636\pi\)
−0.494466 + 0.869197i \(0.664636\pi\)
\(398\) 3.80369 17.1806i 0.190662 0.861185i
\(399\) 0 0
\(400\) 12.2944 + 14.6179i 0.614721 + 0.730895i
\(401\) 4.88307i 0.243849i 0.992539 + 0.121924i \(0.0389065\pi\)
−0.992539 + 0.121924i \(0.961093\pi\)
\(402\) 0 0
\(403\) 3.35827i 0.167287i
\(404\) 14.2340 30.5705i 0.708166 1.52094i
\(405\) 0 0
\(406\) −4.37149 0.967824i −0.216953 0.0480323i
\(407\) −47.8724 −2.37295
\(408\) 0 0
\(409\) 37.9064 1.87435 0.937175 0.348860i \(-0.113431\pi\)
0.937175 + 0.348860i \(0.113431\pi\)
\(410\) 0.579801 + 0.128365i 0.0286344 + 0.00633949i
\(411\) 0 0
\(412\) −1.68443 + 3.61768i −0.0829861 + 0.178230i
\(413\) 8.04817i 0.396025i
\(414\) 0 0
\(415\) 1.79293i 0.0880116i
\(416\) −4.34301 8.31379i −0.212934 0.407617i
\(417\) 0 0
\(418\) −9.33058 + 42.1446i −0.456374 + 2.06136i
\(419\) −22.1571 −1.08245 −0.541224 0.840879i \(-0.682039\pi\)
−0.541224 + 0.840879i \(0.682039\pi\)
\(420\) 0 0
\(421\) −16.8313 −0.820306 −0.410153 0.912017i \(-0.634525\pi\)
−0.410153 + 0.912017i \(0.634525\pi\)
\(422\) −1.32234 + 5.97280i −0.0643707 + 0.290751i
\(423\) 0 0
\(424\) 15.4257 20.1390i 0.749140 0.978036i
\(425\) 17.4948i 0.848620i
\(426\) 0 0
\(427\) 2.14963i 0.104028i
\(428\) −9.09895 4.23657i −0.439814 0.204782i
\(429\) 0 0
\(430\) −6.71375 1.48639i −0.323766 0.0716800i
\(431\) −5.72851 −0.275932 −0.137966 0.990437i \(-0.544057\pi\)
−0.137966 + 0.990437i \(0.544057\pi\)
\(432\) 0 0
\(433\) 19.0597 0.915952 0.457976 0.888965i \(-0.348575\pi\)
0.457976 + 0.888965i \(0.348575\pi\)
\(434\) −3.27887 0.725924i −0.157391 0.0348455i
\(435\) 0 0
\(436\) −11.7366 5.46468i −0.562081 0.261711i
\(437\) 6.80758i 0.325651i
\(438\) 0 0
\(439\) 16.8772i 0.805503i −0.915309 0.402751i \(-0.868054\pi\)
0.915309 0.402751i \(-0.131946\pi\)
\(440\) −3.65645 + 4.77366i −0.174314 + 0.227575i
\(441\) 0 0
\(442\) −1.85707 + 8.38807i −0.0883319 + 0.398980i
\(443\) 21.3411 1.01395 0.506974 0.861961i \(-0.330764\pi\)
0.506974 + 0.861961i \(0.330764\pi\)
\(444\) 0 0
\(445\) 7.26265 0.344283
\(446\) 7.73449 34.9353i 0.366239 1.65424i
\(447\) 0 0
\(448\) 9.05602 2.44323i 0.427857 0.115432i
\(449\) 33.1013i 1.56214i −0.624440 0.781072i \(-0.714673\pi\)
0.624440 0.781072i \(-0.285327\pi\)
\(450\) 0 0
\(451\) 3.97056i 0.186966i
\(452\) −6.74462 + 14.4855i −0.317240 + 0.681341i
\(453\) 0 0
\(454\) −35.1022 7.77143i −1.64743 0.364731i
\(455\) −0.921831 −0.0432161
\(456\) 0 0
\(457\) −27.4032 −1.28187 −0.640933 0.767597i \(-0.721452\pi\)
−0.640933 + 0.767597i \(0.721452\pi\)
\(458\) 29.2720 + 6.48066i 1.36779 + 0.302822i
\(459\) 0 0
\(460\) −0.400289 + 0.859706i −0.0186636 + 0.0400840i
\(461\) 4.07046i 0.189580i −0.995497 0.0947902i \(-0.969782\pi\)
0.995497 0.0947902i \(-0.0302180\pi\)
\(462\) 0 0
\(463\) 3.79483i 0.176361i −0.996105 0.0881803i \(-0.971895\pi\)
0.996105 0.0881803i \(-0.0281052\pi\)
\(464\) 8.26605 6.95217i 0.383742 0.322747i
\(465\) 0 0
\(466\) −3.54319 + 16.0040i −0.164135 + 0.741370i
\(467\) −15.9883 −0.739852 −0.369926 0.929061i \(-0.620617\pi\)
−0.369926 + 0.929061i \(0.620617\pi\)
\(468\) 0 0
\(469\) −9.79932 −0.452491
\(470\) 0.125330 0.566094i 0.00578104 0.0261120i
\(471\) 0 0
\(472\) −15.4131 11.8059i −0.709447 0.543411i
\(473\) 45.9767i 2.11401i
\(474\) 0 0
\(475\) 32.5073i 1.49154i
\(476\) −7.78834 3.62634i −0.356978 0.166213i
\(477\) 0 0
\(478\) 25.2311 + 5.58602i 1.15404 + 0.255498i
\(479\) −2.42884 −0.110976 −0.0554882 0.998459i \(-0.517672\pi\)
−0.0554882 + 0.998459i \(0.517672\pi\)
\(480\) 0 0
\(481\) 17.7043 0.807247
\(482\) 2.71770 + 0.601683i 0.123788 + 0.0274059i
\(483\) 0 0
\(484\) 16.5038 + 7.68434i 0.750172 + 0.349288i
\(485\) 6.62959i 0.301034i
\(486\) 0 0
\(487\) 31.8827i 1.44474i −0.691505 0.722371i \(-0.743052\pi\)
0.691505 0.722371i \(-0.256948\pi\)
\(488\) −4.11677 3.15330i −0.186358 0.142743i
\(489\) 0 0
\(490\) −0.815389 + 3.68297i −0.0368355 + 0.166380i
\(491\) 7.56139 0.341241 0.170620 0.985337i \(-0.445423\pi\)
0.170620 + 0.985337i \(0.445423\pi\)
\(492\) 0 0
\(493\) −9.89283 −0.445551
\(494\) 3.45066 15.5860i 0.155253 0.701249i
\(495\) 0 0
\(496\) 6.20001 5.21453i 0.278389 0.234140i
\(497\) 4.13031i 0.185270i
\(498\) 0 0
\(499\) 23.4350i 1.04910i −0.851381 0.524548i \(-0.824234\pi\)
0.851381 0.524548i \(-0.175766\pi\)
\(500\) −3.91289 + 8.40377i −0.174990 + 0.375828i
\(501\) 0 0
\(502\) 0.00893264 + 0.00197764i 0.000398683 + 8.82663e-5i
\(503\) 23.4464 1.04542 0.522712 0.852510i \(-0.324920\pi\)
0.522712 + 0.852510i \(0.324920\pi\)
\(504\) 0 0
\(505\) 7.99483 0.355765
\(506\) 6.19084 + 1.37062i 0.275216 + 0.0609314i
\(507\) 0 0
\(508\) 4.15092 8.91500i 0.184167 0.395539i
\(509\) 24.5911i 1.08998i −0.838442 0.544991i \(-0.816533\pi\)
0.838442 0.544991i \(-0.183467\pi\)
\(510\) 0 0
\(511\) 13.3134i 0.588949i
\(512\) −8.60527 + 20.9272i −0.380303 + 0.924862i
\(513\) 0 0
\(514\) 4.63825 20.9502i 0.204584 0.924072i
\(515\) −0.946101 −0.0416902
\(516\) 0 0
\(517\) −3.87669 −0.170497
\(518\) −3.82697 + 17.2857i −0.168147 + 0.759492i
\(519\) 0 0
\(520\) 1.35224 1.76541i 0.0592996 0.0774182i
\(521\) 41.0279i 1.79746i 0.438498 + 0.898732i \(0.355511\pi\)
−0.438498 + 0.898732i \(0.644489\pi\)
\(522\) 0 0
\(523\) 31.5714i 1.38052i 0.723562 + 0.690259i \(0.242504\pi\)
−0.723562 + 0.690259i \(0.757496\pi\)
\(524\) 19.1357 + 8.90980i 0.835948 + 0.389227i
\(525\) 0 0
\(526\) −15.8502 3.50915i −0.691102 0.153006i
\(527\) −7.42020 −0.323229
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 5.87209 + 1.30005i 0.255067 + 0.0564705i
\(531\) 0 0
\(532\) 14.4717 + 6.73816i 0.627426 + 0.292136i
\(533\) 1.46840i 0.0636037i
\(534\) 0 0
\(535\) 2.37957i 0.102878i
\(536\) 14.3747 18.7668i 0.620891 0.810601i
\(537\) 0 0
\(538\) −6.73668 + 30.4284i −0.290439 + 1.31186i
\(539\) 25.2215 1.08637
\(540\) 0 0
\(541\) 24.7212 1.06285 0.531424 0.847106i \(-0.321657\pi\)
0.531424 + 0.847106i \(0.321657\pi\)
\(542\) −9.95512 + 44.9655i −0.427609 + 1.93143i
\(543\) 0 0
\(544\) 18.3696 9.59603i 0.787589 0.411426i
\(545\) 3.06937i 0.131477i
\(546\) 0 0
\(547\) 19.3996i 0.829466i 0.909943 + 0.414733i \(0.136125\pi\)
−0.909943 + 0.414733i \(0.863875\pi\)
\(548\) 1.34210 2.88244i 0.0573315 0.123132i
\(549\) 0 0
\(550\) 29.5623 + 6.54493i 1.26054 + 0.279077i
\(551\) 18.3821 0.783102
\(552\) 0 0
\(553\) 3.90022 0.165854
\(554\) 28.8265 + 6.38202i 1.22472 + 0.271146i
\(555\) 0 0
\(556\) −9.67343 + 20.7758i −0.410245 + 0.881089i
\(557\) 27.0797i 1.14740i −0.819064 0.573702i \(-0.805507\pi\)
0.819064 0.573702i \(-0.194493\pi\)
\(558\) 0 0
\(559\) 17.0032i 0.719160i
\(560\) 1.43137 + 1.70188i 0.0604864 + 0.0719175i
\(561\) 0 0
\(562\) 5.54438 25.0430i 0.233875 1.05637i
\(563\) 24.6024 1.03687 0.518433 0.855118i \(-0.326516\pi\)
0.518433 + 0.855118i \(0.326516\pi\)
\(564\) 0 0
\(565\) −3.78827 −0.159374
\(566\) 2.49918 11.2884i 0.105048 0.474485i
\(567\) 0 0
\(568\) 7.91000 + 6.05877i 0.331896 + 0.254220i
\(569\) 19.9964i 0.838294i 0.907918 + 0.419147i \(0.137671\pi\)
−0.907918 + 0.419147i \(0.862329\pi\)
\(570\) 0 0
\(571\) 27.1896i 1.13785i 0.822390 + 0.568924i \(0.192640\pi\)
−0.822390 + 0.568924i \(0.807360\pi\)
\(572\) −13.4793 6.27609i −0.563596 0.262416i
\(573\) 0 0
\(574\) −1.43369 0.317411i −0.0598410 0.0132485i
\(575\) 4.77517 0.199138
\(576\) 0 0
\(577\) −5.42816 −0.225977 −0.112989 0.993596i \(-0.536042\pi\)
−0.112989 + 0.993596i \(0.536042\pi\)
\(578\) 4.93952 + 1.09358i 0.205457 + 0.0454870i
\(579\) 0 0
\(580\) 2.32141 + 1.08087i 0.0963912 + 0.0448808i
\(581\) 4.43342i 0.183929i
\(582\) 0 0
\(583\) 40.2129i 1.66545i
\(584\) −25.4966 19.5295i −1.05506 0.808134i
\(585\) 0 0
\(586\) 2.33989 10.5689i 0.0966601 0.436597i
\(587\) 32.8296 1.35502 0.677511 0.735513i \(-0.263059\pi\)
0.677511 + 0.735513i \(0.263059\pi\)
\(588\) 0 0
\(589\) 13.7876 0.568109
\(590\) 0.994976 4.49413i 0.0409625 0.185021i
\(591\) 0 0
\(592\) −27.4903 32.6856i −1.12984 1.34337i
\(593\) 5.56526i 0.228538i 0.993450 + 0.114269i \(0.0364526\pi\)
−0.993450 + 0.114269i \(0.963547\pi\)
\(594\) 0 0
\(595\) 2.03682i 0.0835013i
\(596\) 3.47468 7.46262i 0.142328 0.305681i
\(597\) 0 0
\(598\) −2.28951 0.506885i −0.0936251 0.0207281i
\(599\) −30.7329 −1.25571 −0.627857 0.778329i \(-0.716068\pi\)
−0.627857 + 0.778329i \(0.716068\pi\)
\(600\) 0 0
\(601\) −19.9150 −0.812349 −0.406175 0.913795i \(-0.633138\pi\)
−0.406175 + 0.913795i \(0.633138\pi\)
\(602\) 16.6012 + 3.67542i 0.676616 + 0.149799i
\(603\) 0 0
\(604\) 11.0996 23.8388i 0.451637 0.969987i
\(605\) 4.31609i 0.175474i
\(606\) 0 0
\(607\) 29.9003i 1.21362i 0.794849 + 0.606808i \(0.207550\pi\)
−0.794849 + 0.606808i \(0.792450\pi\)
\(608\) −34.1329 + 17.8306i −1.38427 + 0.723125i
\(609\) 0 0
\(610\) 0.265753 1.20036i 0.0107600 0.0486012i
\(611\) 1.43369 0.0580008
\(612\) 0 0
\(613\) 36.9033 1.49051 0.745256 0.666779i \(-0.232327\pi\)
0.745256 + 0.666779i \(0.232327\pi\)
\(614\) −4.11151 + 18.5710i −0.165927 + 0.749464i
\(615\) 0 0
\(616\) 9.04139 11.8039i 0.364288 0.475594i
\(617\) 24.9569i 1.00473i −0.864656 0.502364i \(-0.832464\pi\)
0.864656 0.502364i \(-0.167536\pi\)
\(618\) 0 0
\(619\) 31.6234i 1.27105i −0.772079 0.635527i \(-0.780783\pi\)
0.772079 0.635527i \(-0.219217\pi\)
\(620\) 1.74119 + 0.810718i 0.0699279 + 0.0325592i
\(621\) 0 0
\(622\) 8.60215 + 1.90447i 0.344915 + 0.0763623i
\(623\) −17.9585 −0.719493
\(624\) 0 0
\(625\) 21.6781 0.867123
\(626\) 3.29643 + 0.729810i 0.131752 + 0.0291691i
\(627\) 0 0
\(628\) −8.21168 3.82345i −0.327682 0.152572i
\(629\) 39.1182i 1.55975i
\(630\) 0 0
\(631\) 35.0879i 1.39683i 0.715693 + 0.698415i \(0.246111\pi\)
−0.715693 + 0.698415i \(0.753889\pi\)
\(632\) −5.72126 + 7.46935i −0.227579 + 0.297115i
\(633\) 0 0
\(634\) −4.51598 + 20.3979i −0.179353 + 0.810104i
\(635\) 2.33146 0.0925212
\(636\) 0 0
\(637\) −9.32749 −0.369568
\(638\) 3.70099 16.7167i 0.146523 0.661821i
\(639\) 0 0
\(640\) −5.35897 + 0.244734i −0.211832 + 0.00967396i
\(641\) 21.4219i 0.846114i 0.906103 + 0.423057i \(0.139043\pi\)
−0.906103 + 0.423057i \(0.860957\pi\)
\(642\) 0 0
\(643\) 0.476123i 0.0187765i 0.999956 + 0.00938824i \(0.00298841\pi\)
−0.999956 + 0.00938824i \(0.997012\pi\)
\(644\) 0.989803 2.12582i 0.0390037 0.0837689i
\(645\) 0 0
\(646\) 34.4378 + 7.62435i 1.35494 + 0.299976i
\(647\) −39.8244 −1.56566 −0.782830 0.622236i \(-0.786224\pi\)
−0.782830 + 0.622236i \(0.786224\pi\)
\(648\) 0 0
\(649\) −30.7765 −1.20808
\(650\) −10.9328 2.42046i −0.428820 0.0949384i
\(651\) 0 0
\(652\) 1.92724 4.13917i 0.0754766 0.162102i
\(653\) 26.3437i 1.03091i −0.856917 0.515455i \(-0.827623\pi\)
0.856917 0.515455i \(-0.172377\pi\)
\(654\) 0 0
\(655\) 5.00440i 0.195538i
\(656\) 2.71096 2.28006i 0.105845 0.0890213i
\(657\) 0 0
\(658\) −0.309906 + 1.39979i −0.0120814 + 0.0545696i
\(659\) 8.57952 0.334211 0.167105 0.985939i \(-0.446558\pi\)
0.167105 + 0.985939i \(0.446558\pi\)
\(660\) 0 0
\(661\) −14.5774 −0.566994 −0.283497 0.958973i \(-0.591495\pi\)
−0.283497 + 0.958973i \(0.591495\pi\)
\(662\) −5.31786 + 24.0199i −0.206685 + 0.933558i
\(663\) 0 0
\(664\) −8.49049 6.50341i −0.329495 0.252381i
\(665\) 3.78465i 0.146762i
\(666\) 0 0
\(667\) 2.70023i 0.104553i
\(668\) −15.5351 7.23333i −0.601072 0.279866i
\(669\) 0 0
\(670\) 5.47198 + 1.21147i 0.211401 + 0.0468030i
\(671\) −8.22024 −0.317339
\(672\) 0 0
\(673\) −13.0282 −0.502202 −0.251101 0.967961i \(-0.580793\pi\)
−0.251101 + 0.967961i \(0.580793\pi\)
\(674\) 25.5763 + 5.66244i 0.985161 + 0.218109i
\(675\) 0 0
\(676\) −18.5854 8.65355i −0.714821 0.332829i
\(677\) 41.9381i 1.61181i −0.592044 0.805906i \(-0.701679\pi\)
0.592044 0.805906i \(-0.298321\pi\)
\(678\) 0 0
\(679\) 16.3931i 0.629111i
\(680\) 3.90072 + 2.98781i 0.149586 + 0.114577i
\(681\) 0 0
\(682\) 2.77596 12.5385i 0.106297 0.480124i
\(683\) −16.7889 −0.642410 −0.321205 0.947010i \(-0.604088\pi\)
−0.321205 + 0.947010i \(0.604088\pi\)
\(684\) 0 0
\(685\) 0.753820 0.0288020
\(686\) 4.52519 20.4395i 0.172772 0.780383i
\(687\) 0 0
\(688\) −31.3913 + 26.4017i −1.19678 + 1.00656i
\(689\) 14.8716i 0.566565i
\(690\) 0 0
\(691\) 19.1954i 0.730227i 0.930963 + 0.365113i \(0.118970\pi\)
−0.930963 + 0.365113i \(0.881030\pi\)
\(692\) −19.9349 + 42.8144i −0.757810 + 1.62756i
\(693\) 0 0
\(694\) 41.6062 + 9.21137i 1.57935 + 0.349659i
\(695\) −5.43330 −0.206097
\(696\) 0 0
\(697\) −3.24449 −0.122894
\(698\) 30.0814 + 6.65986i 1.13860 + 0.252079i
\(699\) 0 0
\(700\) 4.72648 10.1511i 0.178644 0.383676i
\(701\) 50.9433i 1.92410i −0.272872 0.962050i \(-0.587974\pi\)
0.272872 0.962050i \(-0.412026\pi\)
\(702\) 0 0
\(703\) 72.6864i 2.74142i
\(704\) 9.34297 + 34.6305i 0.352126 + 1.30519i
\(705\) 0 0
\(706\) −5.61222 + 25.3494i −0.211219 + 0.954039i
\(707\) −19.7690 −0.743490
\(708\) 0 0
\(709\) −24.0242 −0.902249 −0.451125 0.892461i \(-0.648977\pi\)
−0.451125 + 0.892461i \(0.648977\pi\)
\(710\) −0.510620 + 2.30638i −0.0191632 + 0.0865570i
\(711\) 0 0
\(712\) 26.3434 34.3925i 0.987262 1.28891i
\(713\) 2.02533i 0.0758493i
\(714\) 0 0
\(715\) 3.52511i 0.131832i
\(716\) 43.6331 + 20.3161i 1.63065 + 0.759247i
\(717\) 0 0
\(718\) −8.07726 1.78826i −0.301441 0.0667373i
\(719\) −18.0272 −0.672302 −0.336151 0.941808i \(-0.609125\pi\)
−0.336151 + 0.941808i \(0.609125\pi\)
\(720\) 0 0
\(721\) 2.33945 0.0871255
\(722\) −37.7548 8.35871i −1.40509 0.311079i
\(723\) 0 0
\(724\) −20.9868 9.77167i −0.779967 0.363161i
\(725\) 12.8941i 0.478874i
\(726\) 0 0
\(727\) 25.0299i 0.928307i −0.885755 0.464154i \(-0.846359\pi\)
0.885755 0.464154i \(-0.153641\pi\)
\(728\) −3.34371 + 4.36536i −0.123926 + 0.161791i
\(729\) 0 0
\(730\) 1.64590 7.43424i 0.0609175 0.275154i
\(731\) 37.5692 1.38955
\(732\) 0 0
\(733\) 7.21556 0.266513 0.133256 0.991082i \(-0.457457\pi\)
0.133256 + 0.991082i \(0.457457\pi\)
\(734\) −6.10337 + 27.5679i −0.225280 + 1.01755i
\(735\) 0 0
\(736\) 2.61922 + 5.01395i 0.0965458 + 0.184817i
\(737\) 37.4729i 1.38033i
\(738\) 0 0
\(739\) 53.2281i 1.95803i −0.203793 0.979014i \(-0.565327\pi\)
0.203793 0.979014i \(-0.434673\pi\)
\(740\) 4.27399 9.17931i 0.157115 0.337438i
\(741\) 0 0
\(742\) −14.5200 3.21466i −0.533048 0.118014i
\(743\) −11.8795 −0.435816 −0.217908 0.975969i \(-0.569923\pi\)
−0.217908 + 0.975969i \(0.569923\pi\)
\(744\) 0 0
\(745\) 1.95163 0.0715023
\(746\) 13.2557 + 2.93475i 0.485327 + 0.107449i
\(747\) 0 0
\(748\) 13.8672 29.7828i 0.507036 1.08897i
\(749\) 5.88401i 0.214997i
\(750\) 0 0
\(751\) 42.0501i 1.53443i −0.641389 0.767216i \(-0.721642\pi\)
0.641389 0.767216i \(-0.278358\pi\)
\(752\) −2.22615 2.64687i −0.0811794 0.0965213i
\(753\) 0 0
\(754\) −1.36871 + 6.18222i −0.0498454 + 0.225143i
\(755\) 6.23435 0.226891
\(756\) 0 0
\(757\) −48.0113 −1.74500 −0.872500 0.488614i \(-0.837503\pi\)
−0.872500 + 0.488614i \(0.837503\pi\)
\(758\) −10.8893 + 49.1853i −0.395519 + 1.78649i
\(759\) 0 0
\(760\) −7.24801 5.55171i −0.262913 0.201382i
\(761\) 6.75256i 0.244780i −0.992482 0.122390i \(-0.960944\pi\)
0.992482 0.122390i \(-0.0390559\pi\)
\(762\) 0 0
\(763\) 7.58969i 0.274765i
\(764\) −27.8550 12.9696i −1.00776 0.469224i
\(765\) 0 0
\(766\) 46.4069 + 10.2742i 1.67675 + 0.371223i
\(767\) 11.3818 0.410974
\(768\) 0 0
\(769\) −0.717958 −0.0258902 −0.0129451 0.999916i \(-0.504121\pi\)
−0.0129451 + 0.999916i \(0.504121\pi\)
\(770\) 3.44177 + 0.761989i 0.124033 + 0.0274602i
\(771\) 0 0
\(772\) −2.48921 1.15900i −0.0895887 0.0417135i
\(773\) 39.3429i 1.41507i 0.706680 + 0.707533i \(0.250192\pi\)
−0.706680 + 0.707533i \(0.749808\pi\)
\(774\) 0 0
\(775\) 9.67130i 0.347403i
\(776\) −31.3946 24.0472i −1.12700 0.863242i
\(777\) 0 0
\(778\) −6.58795 + 29.7566i −0.236190 + 1.06683i
\(779\) 6.02864 0.215999
\(780\) 0 0
\(781\) 15.7944 0.565169
\(782\) 1.11998 5.05875i 0.0400504 0.180901i
\(783\) 0 0
\(784\) 14.4832 + 17.2204i 0.517258 + 0.615013i
\(785\) 2.14753i 0.0766486i
\(786\) 0 0
\(787\) 19.6796i 0.701501i −0.936469 0.350750i \(-0.885927\pi\)
0.936469 0.350750i \(-0.114073\pi\)
\(788\) −8.27941 + 17.7818i −0.294942 + 0.633451i
\(789\) 0 0
\(790\) −2.17790 0.482175i −0.0774862 0.0171550i
\(791\) 9.36734 0.333064
\(792\) 0 0
\(793\) 3.04003 0.107955
\(794\) −27.2073 6.02354i −0.965551 0.213768i
\(795\) 0 0
\(796\) 10.5041 22.5598i 0.372308 0.799612i
\(797\) 12.6856i 0.449348i 0.974434 + 0.224674i \(0.0721316\pi\)
−0.974434 + 0.224674i \(0.927868\pi\)
\(798\) 0 0
\(799\) 3.16778i 0.112068i
\(800\) 12.5072 + 23.9424i 0.442197 + 0.846493i
\(801\) 0 0
\(802\) −1.49274 + 6.74243i −0.0527104 + 0.238084i
\(803\) −50.9108 −1.79660
\(804\) 0 0
\(805\) 0.555946 0.0195945
\(806\) −1.02661 + 4.63702i −0.0361608 + 0.163332i
\(807\) 0 0
\(808\) 28.9992 37.8598i 1.02019 1.33190i
\(809\) 32.1609i 1.13072i 0.824845 + 0.565359i \(0.191262\pi\)
−0.824845 + 0.565359i \(0.808738\pi\)
\(810\) 0 0
\(811\) 3.13861i 0.110212i 0.998481 + 0.0551058i \(0.0175496\pi\)
−0.998481 + 0.0551058i \(0.982450\pi\)
\(812\) −5.74020 2.67270i −0.201441 0.0937934i
\(813\) 0 0
\(814\) −66.1012 14.6344i −2.31685 0.512937i
\(815\) 1.08248 0.0379176
\(816\) 0 0
\(817\) −69.8080 −2.44227
\(818\) 52.3403 + 11.5879i 1.83004 + 0.405160i
\(819\) 0 0
\(820\) 0.761337 + 0.354487i 0.0265870 + 0.0123792i
\(821\) 38.8138i 1.35461i −0.735702 0.677305i \(-0.763148\pi\)
0.735702 0.677305i \(-0.236852\pi\)
\(822\) 0 0
\(823\) 14.8738i 0.518467i 0.965815 + 0.259234i \(0.0834699\pi\)
−0.965815 + 0.259234i \(0.916530\pi\)
\(824\) −3.43174 + 4.48029i −0.119550 + 0.156078i
\(825\) 0 0
\(826\) −2.46030 + 11.1127i −0.0856048 + 0.386662i
\(827\) 14.5906 0.507365 0.253683 0.967288i \(-0.418358\pi\)
0.253683 + 0.967288i \(0.418358\pi\)
\(828\) 0 0
\(829\) −47.0677 −1.63473 −0.817364 0.576121i \(-0.804566\pi\)
−0.817364 + 0.576121i \(0.804566\pi\)
\(830\) 0.548094 2.47564i 0.0190246 0.0859308i
\(831\) 0 0
\(832\) −3.45524 12.8071i −0.119789 0.444008i
\(833\) 20.6094i 0.714073i
\(834\) 0 0
\(835\) 4.06277i 0.140598i
\(836\) −25.7669 + 55.3401i −0.891168 + 1.91398i
\(837\) 0 0
\(838\) −30.5941 6.77336i −1.05686 0.233982i
\(839\) −36.6970 −1.26692 −0.633461 0.773775i \(-0.718366\pi\)
−0.633461 + 0.773775i \(0.718366\pi\)
\(840\) 0 0
\(841\) 21.7087 0.748577
\(842\) −23.2403 5.14527i −0.800912 0.177318i
\(843\) 0 0
\(844\) −3.65173 + 7.84287i −0.125698 + 0.269963i
\(845\) 4.86047i 0.167205i
\(846\) 0 0
\(847\) 10.6725i 0.366711i
\(848\) 27.4559 23.0919i 0.942841 0.792978i
\(849\) 0 0
\(850\) 5.34809 24.1564i 0.183438 0.828557i
\(851\) −10.6773 −0.366012
\(852\) 0 0
\(853\) 13.3936 0.458588 0.229294 0.973357i \(-0.426358\pi\)
0.229294 + 0.973357i \(0.426358\pi\)
\(854\) −0.657134 + 2.96816i −0.0224867 + 0.101568i
\(855\) 0 0
\(856\) −11.2685 8.63129i −0.385150 0.295011i
\(857\) 35.5685i 1.21500i −0.794320 0.607499i \(-0.792173\pi\)
0.794320 0.607499i \(-0.207827\pi\)
\(858\) 0 0
\(859\) 4.83116i 0.164837i 0.996598 + 0.0824186i \(0.0262644\pi\)
−0.996598 + 0.0824186i \(0.973736\pi\)
\(860\) −8.81582 4.10474i −0.300617 0.139971i
\(861\) 0 0
\(862\) −7.90980 1.75119i −0.269409 0.0596456i
\(863\) −41.5509 −1.41441 −0.707204 0.707009i \(-0.750044\pi\)
−0.707204 + 0.707009i \(0.750044\pi\)
\(864\) 0 0
\(865\) −11.1969 −0.380705
\(866\) 26.3173 + 5.82649i 0.894297 + 0.197992i
\(867\) 0 0
\(868\) −4.30548 2.00468i −0.146138 0.0680433i
\(869\) 14.9146i 0.505942i
\(870\) 0 0
\(871\) 13.8583i 0.469572i
\(872\) −14.5351 11.1334i −0.492220 0.377023i
\(873\) 0 0
\(874\) −2.08105 + 9.39976i −0.0703927 + 0.317952i
\(875\) 5.43446 0.183718
\(876\) 0 0
\(877\) −39.4773 −1.33306 −0.666528 0.745480i \(-0.732220\pi\)
−0.666528 + 0.745480i \(0.732220\pi\)
\(878\) 5.15929 23.3036i 0.174118 0.786459i
\(879\) 0 0
\(880\) −6.50804 + 5.47360i −0.219386 + 0.184515i
\(881\) 13.1178i 0.441951i −0.975279 0.220975i \(-0.929076\pi\)
0.975279 0.220975i \(-0.0709240\pi\)
\(882\) 0 0
\(883\) 32.9057i 1.10736i 0.832728 + 0.553682i \(0.186778\pi\)
−0.832728 + 0.553682i \(0.813222\pi\)
\(884\) −5.12841 + 11.0144i −0.172487 + 0.370453i
\(885\) 0 0
\(886\) 29.4674 + 6.52392i 0.989976 + 0.219175i
\(887\) −49.1905 −1.65165 −0.825827 0.563923i \(-0.809292\pi\)
−0.825827 + 0.563923i \(0.809292\pi\)
\(888\) 0 0
\(889\) −5.76506 −0.193354
\(890\) 10.0281 + 2.22017i 0.336143 + 0.0744202i
\(891\) 0 0
\(892\) 21.3592 45.8736i 0.715160 1.53596i
\(893\) 5.88611i 0.196971i
\(894\) 0 0
\(895\) 11.4110i 0.381427i
\(896\) 13.2512 0.605159i 0.442693 0.0202169i
\(897\) 0 0
\(898\) 10.1189 45.7055i 0.337674 1.52521i
\(899\) −5.46887 −0.182397
\(900\) 0 0
\(901\) −32.8594 −1.09470
\(902\) 1.21379 5.48247i 0.0404147 0.182546i
\(903\) 0 0
\(904\) −13.7410 + 17.9395i −0.457019 + 0.596658i
\(905\) 5.48849i 0.182443i
\(906\) 0 0
\(907\) 52.4548i 1.74173i 0.491520 + 0.870866i \(0.336442\pi\)
−0.491520 + 0.870866i \(0.663558\pi\)
\(908\) −46.0926 21.4612i −1.52964 0.712216i
\(909\) 0 0
\(910\) −1.27285 0.281801i −0.0421944 0.00934161i
\(911\) −1.90599 −0.0631482 −0.0315741 0.999501i \(-0.510052\pi\)
−0.0315741 + 0.999501i \(0.510052\pi\)
\(912\) 0 0
\(913\) −16.9536 −0.561081
\(914\) −37.8377 8.37706i −1.25156 0.277088i
\(915\) 0 0
\(916\) 38.4371 + 17.8967i 1.27000 + 0.591324i
\(917\) 12.3745i 0.408642i
\(918\) 0 0
\(919\) 45.0613i 1.48643i 0.669050 + 0.743217i \(0.266701\pi\)
−0.669050 + 0.743217i \(0.733299\pi\)
\(920\) −0.815519 + 1.06470i −0.0268869 + 0.0351020i
\(921\) 0 0
\(922\) 1.24433 5.62041i 0.0409797 0.185098i
\(923\) −5.84114 −0.192264
\(924\) 0 0
\(925\) −50.9858 −1.67640
\(926\) 1.16007 5.23982i 0.0381222 0.172191i
\(927\) 0 0
\(928\) 13.5388 7.07251i 0.444434 0.232167i
\(929\) 58.8031i 1.92927i −0.263592 0.964634i \(-0.584907\pi\)
0.263592 0.964634i \(-0.415093\pi\)
\(930\) 0 0
\(931\) 38.2947i 1.25506i
\(932\) −9.78473 + 21.0148i −0.320509 + 0.688363i
\(933\) 0 0
\(934\) −22.0763 4.88758i −0.722360 0.159927i
\(935\) 7.78885 0.254722
\(936\) 0 0
\(937\) −9.50851 −0.310630 −0.155315 0.987865i \(-0.549639\pi\)
−0.155315 + 0.987865i \(0.549639\pi\)
\(938\) −13.5307 2.99562i −0.441793 0.0978105i
\(939\) 0 0
\(940\) 0.346106 0.743337i 0.0112887 0.0242450i
\(941\) 7.76530i 0.253142i −0.991958 0.126571i \(-0.959603\pi\)
0.991958 0.126571i \(-0.0403971\pi\)
\(942\) 0 0
\(943\) 0.885578i 0.0288384i
\(944\) −17.6731 21.0131i −0.575210 0.683917i
\(945\) 0 0
\(946\) −14.0549 + 63.4837i −0.456965 + 2.06403i
\(947\) 0.384626 0.0124987 0.00624934 0.999980i \(-0.498011\pi\)
0.00624934 + 0.999980i \(0.498011\pi\)
\(948\) 0 0
\(949\) 18.8280 0.611181
\(950\) −9.93739 + 44.8854i −0.322411 + 1.45628i
\(951\) 0 0
\(952\) −9.64541 7.38804i −0.312610 0.239448i
\(953\) 47.1282i 1.52663i −0.646025 0.763316i \(-0.723570\pi\)
0.646025 0.763316i \(-0.276430\pi\)
\(954\) 0 0
\(955\) 7.28469i 0.235727i
\(956\) 33.1309 + 15.4261i 1.07153 + 0.498916i
\(957\) 0 0
\(958\) −3.35369 0.742488i −0.108353 0.0239887i
\(959\) −1.86399 −0.0601913
\(960\) 0 0
\(961\) 26.8980 0.867678
\(962\) 24.4457 + 5.41215i 0.788162 + 0.174495i
\(963\) 0 0
\(964\) 3.56860 + 1.66158i 0.114937 + 0.0535159i
\(965\) 0.650982i 0.0209558i
\(966\) 0 0
\(967\) 34.3587i 1.10490i −0.833546 0.552451i \(-0.813693\pi\)
0.833546 0.552451i \(-0.186307\pi\)
\(968\) 20.4390 + 15.6555i 0.656934 + 0.503188i
\(969\) 0 0
\(970\) 2.02664 9.15399i 0.0650716 0.293917i
\(971\) −13.7054 −0.439829 −0.219914 0.975519i \(-0.570578\pi\)
−0.219914 + 0.975519i \(0.570578\pi\)
\(972\) 0 0
\(973\) 13.4351 0.430708
\(974\) 9.74643 44.0229i 0.312296 1.41059i
\(975\) 0 0
\(976\) −4.72040 5.61249i −0.151096 0.179651i
\(977\) 9.37625i 0.299973i −0.988688 0.149986i \(-0.952077\pi\)
0.988688 0.149986i \(-0.0479230\pi\)
\(978\) 0 0
\(979\) 68.6740i 2.19483i
\(980\) −2.25174 + 4.83611i −0.0719293 + 0.154484i
\(981\) 0 0
\(982\) 10.4406 + 2.31149i 0.333173 + 0.0737626i
\(983\) 42.1869 1.34555 0.672777 0.739846i \(-0.265101\pi\)
0.672777 + 0.739846i \(0.265101\pi\)
\(984\) 0 0
\(985\) −4.65033 −0.148172
\(986\) −13.6598 3.02421i −0.435017 0.0963103i
\(987\) 0 0
\(988\) 9.52920 20.4660i 0.303164 0.651111i
\(989\) 10.2545i 0.326073i
\(990\) 0 0
\(991\) 27.8097i 0.883403i 0.897162 + 0.441702i \(0.145625\pi\)
−0.897162 + 0.441702i \(0.854375\pi\)
\(992\) 10.1549 5.30479i 0.322419 0.168427i
\(993\) 0 0
\(994\) 1.26262 5.70305i 0.0400480 0.180890i
\(995\) 5.89987 0.187039
\(996\) 0 0
\(997\) 43.3065 1.37153 0.685765 0.727823i \(-0.259468\pi\)
0.685765 + 0.727823i \(0.259468\pi\)
\(998\) 7.16401 32.3586i 0.226773 1.02429i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 828.2.c.f.323.12 yes 12
3.2 odd 2 828.2.c.e.323.1 12
4.3 odd 2 828.2.c.e.323.4 yes 12
12.11 even 2 inner 828.2.c.f.323.9 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
828.2.c.e.323.1 12 3.2 odd 2
828.2.c.e.323.4 yes 12 4.3 odd 2
828.2.c.f.323.9 yes 12 12.11 even 2 inner
828.2.c.f.323.12 yes 12 1.1 even 1 trivial