Properties

Label 820.1.bp
Level $820$
Weight $1$
Character orbit 820.bp
Rep. character $\chi_{820}(39,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $32$
Newform subspaces $4$
Sturm bound $126$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 820.bp (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 820 \)
Character field: \(\Q(\zeta_{20})\)
Newform subspaces: \( 4 \)
Sturm bound: \(126\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(820, [\chi])\).

Total New Old
Modular forms 64 64 0
Cusp forms 32 32 0
Eisenstein series 32 32 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 32 0 0 0

Trace form

\( 32 q + 4 q^{6} - 16 q^{14} - 8 q^{16} - 4 q^{24} + 8 q^{25} + 4 q^{26} - 20 q^{29} + 16 q^{30} - 16 q^{34} + 4 q^{41} - 8 q^{45} + 20 q^{54} - 4 q^{56} + 10 q^{65} + 8 q^{69} - 4 q^{70} - 40 q^{81} + 10 q^{85}+ \cdots + 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(820, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
820.1.bp.a 820.bp 820.ap $8$ $0.409$ \(\Q(\zeta_{20})\) $D_{20}$ \(\Q(\sqrt{-1}) \) None 820.1.bp.a \(-2\) \(0\) \(0\) \(0\) \(q-\zeta_{20}^{6}q^{2}-\zeta_{20}^{2}q^{4}-\zeta_{20}^{3}q^{5}+\cdots\)
820.1.bp.b 820.bp 820.ap $8$ $0.409$ \(\Q(\zeta_{20})\) $D_{20}$ \(\Q(\sqrt{-5}) \) None 820.1.bp.b \(0\) \(-2\) \(0\) \(-2\) \(q+\zeta_{20}q^{2}+(-\zeta_{20}^{2}-\zeta_{20}^{3})q^{3}+\zeta_{20}^{2}q^{4}+\cdots\)
820.1.bp.c 820.bp 820.ap $8$ $0.409$ \(\Q(\zeta_{20})\) $D_{20}$ \(\Q(\sqrt{-5}) \) None 820.1.bp.b \(0\) \(2\) \(0\) \(2\) \(q-\zeta_{20}q^{2}+(\zeta_{20}^{2}+\zeta_{20}^{3})q^{3}+\zeta_{20}^{2}q^{4}+\cdots\)
820.1.bp.d 820.bp 820.ap $8$ $0.409$ \(\Q(\zeta_{20})\) $D_{20}$ \(\Q(\sqrt{-1}) \) None 820.1.bp.a \(2\) \(0\) \(0\) \(0\) \(q+\zeta_{20}^{6}q^{2}-\zeta_{20}^{2}q^{4}+\zeta_{20}q^{5}-\zeta_{20}^{8}q^{8}+\cdots\)