Defining parameters
Level: | \( N \) | \(=\) | \( 820 = 2^{2} \cdot 5 \cdot 41 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 820.bp (of order \(20\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 820 \) |
Character field: | \(\Q(\zeta_{20})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(126\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(820, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 64 | 64 | 0 |
Cusp forms | 32 | 32 | 0 |
Eisenstein series | 32 | 32 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 32 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(820, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
820.1.bp.a | $8$ | $0.409$ | \(\Q(\zeta_{20})\) | $D_{20}$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{20}^{6}q^{2}-\zeta_{20}^{2}q^{4}-\zeta_{20}^{3}q^{5}+\cdots\) |
820.1.bp.b | $8$ | $0.409$ | \(\Q(\zeta_{20})\) | $D_{20}$ | \(\Q(\sqrt{-5}) \) | None | \(0\) | \(-2\) | \(0\) | \(-2\) | \(q+\zeta_{20}q^{2}+(-\zeta_{20}^{2}-\zeta_{20}^{3})q^{3}+\zeta_{20}^{2}q^{4}+\cdots\) |
820.1.bp.c | $8$ | $0.409$ | \(\Q(\zeta_{20})\) | $D_{20}$ | \(\Q(\sqrt{-5}) \) | None | \(0\) | \(2\) | \(0\) | \(2\) | \(q-\zeta_{20}q^{2}+(\zeta_{20}^{2}+\zeta_{20}^{3})q^{3}+\zeta_{20}^{2}q^{4}+\cdots\) |
820.1.bp.d | $8$ | $0.409$ | \(\Q(\zeta_{20})\) | $D_{20}$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{20}^{6}q^{2}-\zeta_{20}^{2}q^{4}+\zeta_{20}q^{5}-\zeta_{20}^{8}q^{8}+\cdots\) |