Properties

Label 82.6.c.a.73.8
Level $82$
Weight $6$
Character 82.73
Analytic conductor $13.151$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [82,6,Mod(9,82)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(82, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("82.9"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 82 = 2 \cdot 41 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 82.c (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.1514732247\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 2 x^{14} + 3744 x^{13} + 591440 x^{12} + 1165004 x^{11} + 3495880 x^{10} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8}\cdot 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 73.8
Root \(-15.3135 - 15.3135i\) of defining polynomial
Character \(\chi\) \(=\) 82.73
Dual form 82.6.c.a.9.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000i q^{2} +(15.3135 - 15.3135i) q^{3} -16.0000 q^{4} +59.4099i q^{5} +(61.2538 + 61.2538i) q^{6} +(-111.655 + 111.655i) q^{7} -64.0000i q^{8} -226.004i q^{9} -237.640 q^{10} +(13.6671 - 13.6671i) q^{11} +(-245.015 + 245.015i) q^{12} +(-546.015 + 546.015i) q^{13} +(-446.620 - 446.620i) q^{14} +(909.771 + 909.771i) q^{15} +256.000 q^{16} +(475.377 + 475.377i) q^{17} +904.014 q^{18} +(1573.62 + 1573.62i) q^{19} -950.559i q^{20} +3419.65i q^{21} +(54.6684 + 54.6684i) q^{22} -2910.69 q^{23} +(-980.061 - 980.061i) q^{24} -404.541 q^{25} +(-2184.06 - 2184.06i) q^{26} +(260.273 + 260.273i) q^{27} +(1786.48 - 1786.48i) q^{28} +(101.789 - 101.789i) q^{29} +(-3639.09 + 3639.09i) q^{30} -5765.43 q^{31} +1024.00i q^{32} -418.581i q^{33} +(-1901.51 + 1901.51i) q^{34} +(-6633.42 - 6633.42i) q^{35} +3616.06i q^{36} +5267.63 q^{37} +(-6294.50 + 6294.50i) q^{38} +16722.8i q^{39} +3802.24 q^{40} +(-8663.74 - 6387.16i) q^{41} -13678.6 q^{42} -7337.12i q^{43} +(-218.674 + 218.674i) q^{44} +13426.9 q^{45} -11642.8i q^{46} +(20040.8 + 20040.8i) q^{47} +(3920.24 - 3920.24i) q^{48} -8126.70i q^{49} -1618.17i q^{50} +14559.3 q^{51} +(8736.25 - 8736.25i) q^{52} +(16131.4 - 16131.4i) q^{53} +(-1041.09 + 1041.09i) q^{54} +(811.961 + 811.961i) q^{55} +(7145.92 + 7145.92i) q^{56} +48195.2 q^{57} +(407.156 + 407.156i) q^{58} -648.258 q^{59} +(-14556.3 - 14556.3i) q^{60} -43907.4i q^{61} -23061.7i q^{62} +(25234.4 + 25234.4i) q^{63} -4096.00 q^{64} +(-32438.7 - 32438.7i) q^{65} +1674.32 q^{66} +(25258.3 + 25258.3i) q^{67} +(-7606.03 - 7606.03i) q^{68} +(-44572.7 + 44572.7i) q^{69} +(26533.7 - 26533.7i) q^{70} +(-36466.2 + 36466.2i) q^{71} -14464.2 q^{72} -38756.3i q^{73} +21070.5i q^{74} +(-6194.93 + 6194.93i) q^{75} +(-25178.0 - 25178.0i) q^{76} +3052.00i q^{77} -66891.0 q^{78} +(-13182.3 + 13182.3i) q^{79} +15208.9i q^{80} +62890.2 q^{81} +(25548.6 - 34655.0i) q^{82} -12127.7 q^{83} -54714.4i q^{84} +(-28242.1 + 28242.1i) q^{85} +29348.5 q^{86} -3117.48i q^{87} +(-874.694 - 874.694i) q^{88} +(74101.6 - 74101.6i) q^{89} +53707.4i q^{90} -121931. i q^{91} +46571.0 q^{92} +(-88288.7 + 88288.7i) q^{93} +(-80163.2 + 80163.2i) q^{94} +(-93488.9 + 93488.9i) q^{95} +(15681.0 + 15681.0i) q^{96} +(25241.5 + 25241.5i) q^{97} +32506.8 q^{98} +(-3088.81 - 3088.81i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{3} - 256 q^{4} - 8 q^{6} - 100 q^{7} - 160 q^{10} - 418 q^{11} + 32 q^{12} - 194 q^{13} - 400 q^{14} + 1576 q^{15} + 4096 q^{16} + 2508 q^{17} + 3888 q^{18} + 1458 q^{19} - 1672 q^{22} + 11312 q^{23}+ \cdots + 266182 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/82\mathbb{Z}\right)^\times\).

\(n\) \(47\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) 15.3135 15.3135i 0.982358 0.982358i −0.0174887 0.999847i \(-0.505567\pi\)
0.999847 + 0.0174887i \(0.00556710\pi\)
\(4\) −16.0000 −0.500000
\(5\) 59.4099i 1.06276i 0.847134 + 0.531379i \(0.178326\pi\)
−0.847134 + 0.531379i \(0.821674\pi\)
\(6\) 61.2538 + 61.2538i 0.694632 + 0.694632i
\(7\) −111.655 + 111.655i −0.861258 + 0.861258i −0.991484 0.130226i \(-0.958430\pi\)
0.130226 + 0.991484i \(0.458430\pi\)
\(8\) 64.0000i 0.353553i
\(9\) 226.004i 0.930056i
\(10\) −237.640 −0.751483
\(11\) 13.6671 13.6671i 0.0340561 0.0340561i −0.689874 0.723930i \(-0.742334\pi\)
0.723930 + 0.689874i \(0.242334\pi\)
\(12\) −245.015 + 245.015i −0.491179 + 0.491179i
\(13\) −546.015 + 546.015i −0.896079 + 0.896079i −0.995087 0.0990074i \(-0.968433\pi\)
0.0990074 + 0.995087i \(0.468433\pi\)
\(14\) −446.620 446.620i −0.609001 0.609001i
\(15\) 909.771 + 909.771i 1.04401 + 1.04401i
\(16\) 256.000 0.250000
\(17\) 475.377 + 475.377i 0.398948 + 0.398948i 0.877862 0.478914i \(-0.158969\pi\)
−0.478914 + 0.877862i \(0.658969\pi\)
\(18\) 904.014 0.657649
\(19\) 1573.62 + 1573.62i 1.00004 + 1.00004i 1.00000 3.89536e-5i \(1.23993e-5\pi\)
3.89536e−5 1.00000i \(0.499988\pi\)
\(20\) 950.559i 0.531379i
\(21\) 3419.65i 1.69213i
\(22\) 54.6684 + 54.6684i 0.0240813 + 0.0240813i
\(23\) −2910.69 −1.14730 −0.573649 0.819101i \(-0.694473\pi\)
−0.573649 + 0.819101i \(0.694473\pi\)
\(24\) −980.061 980.061i −0.347316 0.347316i
\(25\) −404.541 −0.129453
\(26\) −2184.06 2184.06i −0.633624 0.633624i
\(27\) 260.273 + 260.273i 0.0687101 + 0.0687101i
\(28\) 1786.48 1786.48i 0.430629 0.430629i
\(29\) 101.789 101.789i 0.0224753 0.0224753i −0.695780 0.718255i \(-0.744941\pi\)
0.718255 + 0.695780i \(0.244941\pi\)
\(30\) −3639.09 + 3639.09i −0.738226 + 0.738226i
\(31\) −5765.43 −1.07753 −0.538763 0.842457i \(-0.681108\pi\)
−0.538763 + 0.842457i \(0.681108\pi\)
\(32\) 1024.00i 0.176777i
\(33\) 418.581i 0.0669105i
\(34\) −1901.51 + 1901.51i −0.282099 + 0.282099i
\(35\) −6633.42 6633.42i −0.915308 0.915308i
\(36\) 3616.06i 0.465028i
\(37\) 5267.63 0.632573 0.316287 0.948664i \(-0.397564\pi\)
0.316287 + 0.948664i \(0.397564\pi\)
\(38\) −6294.50 + 6294.50i −0.707134 + 0.707134i
\(39\) 16722.8i 1.76054i
\(40\) 3802.24 0.375741
\(41\) −8663.74 6387.16i −0.804907 0.593401i
\(42\) −13678.6 −1.19652
\(43\) 7337.12i 0.605138i −0.953127 0.302569i \(-0.902156\pi\)
0.953127 0.302569i \(-0.0978443\pi\)
\(44\) −218.674 + 218.674i −0.0170280 + 0.0170280i
\(45\) 13426.9 0.988424
\(46\) 11642.8i 0.811262i
\(47\) 20040.8 + 20040.8i 1.32334 + 1.32334i 0.911058 + 0.412279i \(0.135267\pi\)
0.412279 + 0.911058i \(0.364733\pi\)
\(48\) 3920.24 3920.24i 0.245590 0.245590i
\(49\) 8126.70i 0.483531i
\(50\) 1618.17i 0.0915373i
\(51\) 14559.3 0.783819
\(52\) 8736.25 8736.25i 0.448040 0.448040i
\(53\) 16131.4 16131.4i 0.788829 0.788829i −0.192473 0.981302i \(-0.561651\pi\)
0.981302 + 0.192473i \(0.0616508\pi\)
\(54\) −1041.09 + 1041.09i −0.0485854 + 0.0485854i
\(55\) 811.961 + 811.961i 0.0361933 + 0.0361933i
\(56\) 7145.92 + 7145.92i 0.304501 + 0.304501i
\(57\) 48195.2 1.96479
\(58\) 407.156 + 407.156i 0.0158924 + 0.0158924i
\(59\) −648.258 −0.0242448 −0.0121224 0.999927i \(-0.503859\pi\)
−0.0121224 + 0.999927i \(0.503859\pi\)
\(60\) −14556.3 14556.3i −0.522004 0.522004i
\(61\) 43907.4i 1.51082i −0.655251 0.755411i \(-0.727437\pi\)
0.655251 0.755411i \(-0.272563\pi\)
\(62\) 23061.7i 0.761926i
\(63\) 25234.4 + 25234.4i 0.801018 + 0.801018i
\(64\) −4096.00 −0.125000
\(65\) −32438.7 32438.7i −0.952315 0.952315i
\(66\) 1674.32 0.0473129
\(67\) 25258.3 + 25258.3i 0.687413 + 0.687413i 0.961659 0.274247i \(-0.0884285\pi\)
−0.274247 + 0.961659i \(0.588429\pi\)
\(68\) −7606.03 7606.03i −0.199474 0.199474i
\(69\) −44572.7 + 44572.7i −1.12706 + 1.12706i
\(70\) 26533.7 26533.7i 0.647221 0.647221i
\(71\) −36466.2 + 36466.2i −0.858509 + 0.858509i −0.991162 0.132654i \(-0.957650\pi\)
0.132654 + 0.991162i \(0.457650\pi\)
\(72\) −14464.2 −0.328824
\(73\) 38756.3i 0.851208i −0.904910 0.425604i \(-0.860062\pi\)
0.904910 0.425604i \(-0.139938\pi\)
\(74\) 21070.5i 0.447297i
\(75\) −6194.93 + 6194.93i −0.127169 + 0.127169i
\(76\) −25178.0 25178.0i −0.500019 0.500019i
\(77\) 3052.00i 0.0586621i
\(78\) −66891.0 −1.24489
\(79\) −13182.3 + 13182.3i −0.237641 + 0.237641i −0.815873 0.578231i \(-0.803743\pi\)
0.578231 + 0.815873i \(0.303743\pi\)
\(80\) 15208.9i 0.265689i
\(81\) 62890.2 1.06505
\(82\) 25548.6 34655.0i 0.419598 0.569155i
\(83\) −12127.7 −0.193234 −0.0966169 0.995322i \(-0.530802\pi\)
−0.0966169 + 0.995322i \(0.530802\pi\)
\(84\) 54714.4i 0.846064i
\(85\) −28242.1 + 28242.1i −0.423984 + 0.423984i
\(86\) 29348.5 0.427897
\(87\) 3117.48i 0.0441576i
\(88\) −874.694 874.694i −0.0120406 0.0120406i
\(89\) 74101.6 74101.6i 0.991636 0.991636i −0.00832915 0.999965i \(-0.502651\pi\)
0.999965 + 0.00832915i \(0.00265128\pi\)
\(90\) 53707.4i 0.698921i
\(91\) 121931.i 1.54351i
\(92\) 46571.0 0.573649
\(93\) −88288.7 + 88288.7i −1.05852 + 1.05852i
\(94\) −80163.2 + 80163.2i −0.935740 + 0.935740i
\(95\) −93488.9 + 93488.9i −1.06280 + 1.06280i
\(96\) 15681.0 + 15681.0i 0.173658 + 0.173658i
\(97\) 25241.5 + 25241.5i 0.272387 + 0.272387i 0.830060 0.557674i \(-0.188306\pi\)
−0.557674 + 0.830060i \(0.688306\pi\)
\(98\) 32506.8 0.341908
\(99\) −3088.81 3088.81i −0.0316741 0.0316741i
\(100\) 6472.66 0.0647266
\(101\) −17219.3 17219.3i −0.167962 0.167962i 0.618121 0.786083i \(-0.287894\pi\)
−0.786083 + 0.618121i \(0.787894\pi\)
\(102\) 58237.3i 0.554244i
\(103\) 120103.i 1.11548i −0.830017 0.557738i \(-0.811669\pi\)
0.830017 0.557738i \(-0.188331\pi\)
\(104\) 34945.0 + 34945.0i 0.316812 + 0.316812i
\(105\) −203161. −1.79832
\(106\) 64525.7 + 64525.7i 0.557786 + 0.557786i
\(107\) 140265. 1.18438 0.592188 0.805800i \(-0.298264\pi\)
0.592188 + 0.805800i \(0.298264\pi\)
\(108\) −4164.37 4164.37i −0.0343550 0.0343550i
\(109\) 126743. + 126743.i 1.02178 + 1.02178i 0.999758 + 0.0220210i \(0.00701005\pi\)
0.0220210 + 0.999758i \(0.492990\pi\)
\(110\) −3247.85 + 3247.85i −0.0255926 + 0.0255926i
\(111\) 80665.6 80665.6i 0.621414 0.621414i
\(112\) −28583.7 + 28583.7i −0.215315 + 0.215315i
\(113\) −41402.3 −0.305020 −0.152510 0.988302i \(-0.548736\pi\)
−0.152510 + 0.988302i \(0.548736\pi\)
\(114\) 192781.i 1.38932i
\(115\) 172924.i 1.21930i
\(116\) −1628.62 + 1628.62i −0.0112376 + 0.0112376i
\(117\) 123401. + 123401.i 0.833404 + 0.833404i
\(118\) 2593.03i 0.0171436i
\(119\) −106156. −0.687194
\(120\) 58225.4 58225.4i 0.369113 0.369113i
\(121\) 160677.i 0.997680i
\(122\) 175630. 1.06831
\(123\) −230481. + 34862.4i −1.37364 + 0.207775i
\(124\) 92247.0 0.538763
\(125\) 161622.i 0.925180i
\(126\) −100938. + 100938.i −0.566405 + 0.566405i
\(127\) −213488. −1.17453 −0.587265 0.809395i \(-0.699795\pi\)
−0.587265 + 0.809395i \(0.699795\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) −112357. 112357.i −0.594462 0.594462i
\(130\) 129755. 129755.i 0.673388 0.673388i
\(131\) 21770.3i 0.110837i −0.998463 0.0554186i \(-0.982351\pi\)
0.998463 0.0554186i \(-0.0176493\pi\)
\(132\) 6697.29i 0.0334553i
\(133\) −351406. −1.72258
\(134\) −101033. + 101033.i −0.486074 + 0.486074i
\(135\) −15462.8 + 15462.8i −0.0730221 + 0.0730221i
\(136\) 30424.1 30424.1i 0.141049 0.141049i
\(137\) −110327. 110327.i −0.502206 0.502206i 0.409917 0.912123i \(-0.365558\pi\)
−0.912123 + 0.409917i \(0.865558\pi\)
\(138\) −178291. 178291.i −0.796950 0.796950i
\(139\) −161854. −0.710537 −0.355268 0.934764i \(-0.615611\pi\)
−0.355268 + 0.934764i \(0.615611\pi\)
\(140\) 106135. + 106135.i 0.457654 + 0.457654i
\(141\) 613788. 2.59998
\(142\) −145865. 145865.i −0.607057 0.607057i
\(143\) 14924.9i 0.0610339i
\(144\) 57856.9i 0.232514i
\(145\) 6047.27 + 6047.27i 0.0238858 + 0.0238858i
\(146\) 155025. 0.601895
\(147\) −124448. 124448.i −0.475001 0.475001i
\(148\) −84282.1 −0.316287
\(149\) 245659. + 245659.i 0.906498 + 0.906498i 0.995988 0.0894901i \(-0.0285237\pi\)
−0.0894901 + 0.995988i \(0.528524\pi\)
\(150\) −24779.7 24779.7i −0.0899224 0.0899224i
\(151\) −194244. + 194244.i −0.693275 + 0.693275i −0.962951 0.269676i \(-0.913083\pi\)
0.269676 + 0.962951i \(0.413083\pi\)
\(152\) 100712. 100712.i 0.353567 0.353567i
\(153\) 107437. 107437.i 0.371044 0.371044i
\(154\) −12208.0 −0.0414804
\(155\) 342524.i 1.14515i
\(156\) 267564.i 0.880271i
\(157\) 330693. 330693.i 1.07072 1.07072i 0.0734192 0.997301i \(-0.476609\pi\)
0.997301 0.0734192i \(-0.0233911\pi\)
\(158\) −52729.0 52729.0i −0.168038 0.168038i
\(159\) 494056.i 1.54983i
\(160\) −60835.8 −0.187871
\(161\) 324993. 324993.i 0.988120 0.988120i
\(162\) 251561.i 0.753105i
\(163\) 407181. 1.20038 0.600190 0.799858i \(-0.295092\pi\)
0.600190 + 0.799858i \(0.295092\pi\)
\(164\) 138620. + 102195.i 0.402454 + 0.296700i
\(165\) 24867.9 0.0711097
\(166\) 48510.8i 0.136637i
\(167\) −338103. + 338103.i −0.938119 + 0.938119i −0.998194 0.0600747i \(-0.980866\pi\)
0.0600747 + 0.998194i \(0.480866\pi\)
\(168\) 218858. 0.598258
\(169\) 224972.i 0.605916i
\(170\) −112968. 112968.i −0.299802 0.299802i
\(171\) 355645. 355645.i 0.930092 0.930092i
\(172\) 117394.i 0.302569i
\(173\) 715111.i 1.81660i 0.418323 + 0.908298i \(0.362618\pi\)
−0.418323 + 0.908298i \(0.637382\pi\)
\(174\) 12469.9 0.0312241
\(175\) 45169.1 45169.1i 0.111493 0.111493i
\(176\) 3498.78 3498.78i 0.00851402 0.00851402i
\(177\) −9927.07 + 9927.07i −0.0238170 + 0.0238170i
\(178\) 296406. + 296406.i 0.701193 + 0.701193i
\(179\) 251891. + 251891.i 0.587597 + 0.587597i 0.936980 0.349383i \(-0.113609\pi\)
−0.349383 + 0.936980i \(0.613609\pi\)
\(180\) −214830. −0.494212
\(181\) 97009.1 + 97009.1i 0.220098 + 0.220098i 0.808540 0.588442i \(-0.200258\pi\)
−0.588442 + 0.808540i \(0.700258\pi\)
\(182\) 487723. 1.09143
\(183\) −672374. 672374.i −1.48417 1.48417i
\(184\) 186284.i 0.405631i
\(185\) 312950.i 0.672272i
\(186\) −353155. 353155.i −0.748484 0.748484i
\(187\) 12994.0 0.0271732
\(188\) −320653. 320653.i −0.661668 0.661668i
\(189\) −58121.7 −0.118354
\(190\) −373956. 373956.i −0.751512 0.751512i
\(191\) 459503. + 459503.i 0.911392 + 0.911392i 0.996382 0.0849898i \(-0.0270858\pi\)
−0.0849898 + 0.996382i \(0.527086\pi\)
\(192\) −62723.9 + 62723.9i −0.122795 + 0.122795i
\(193\) −187128. + 187128.i −0.361614 + 0.361614i −0.864407 0.502793i \(-0.832306\pi\)
0.502793 + 0.864407i \(0.332306\pi\)
\(194\) −100966. + 100966.i −0.192607 + 0.192607i
\(195\) −993498. −1.87103
\(196\) 130027.i 0.241765i
\(197\) 849072.i 1.55876i 0.626552 + 0.779379i \(0.284465\pi\)
−0.626552 + 0.779379i \(0.715535\pi\)
\(198\) 12355.3 12355.3i 0.0223969 0.0223969i
\(199\) −385129. 385129.i −0.689403 0.689403i 0.272697 0.962100i \(-0.412084\pi\)
−0.962100 + 0.272697i \(0.912084\pi\)
\(200\) 25890.6i 0.0457686i
\(201\) 773584. 1.35057
\(202\) 68877.1 68877.1i 0.118767 0.118767i
\(203\) 22730.5i 0.0387141i
\(204\) −232949. −0.391909
\(205\) 379461. 514712.i 0.630641 0.855421i
\(206\) 480411. 0.788761
\(207\) 657826.i 1.06705i
\(208\) −139780. + 139780.i −0.224020 + 0.224020i
\(209\) 43013.7 0.0681148
\(210\) 812645.i 1.27161i
\(211\) −524629. 524629.i −0.811235 0.811235i 0.173584 0.984819i \(-0.444465\pi\)
−0.984819 + 0.173584i \(0.944465\pi\)
\(212\) −258103. + 258103.i −0.394415 + 0.394415i
\(213\) 1.11685e6i 1.68673i
\(214\) 561059.i 0.837480i
\(215\) 435898. 0.643115
\(216\) 16657.5 16657.5i 0.0242927 0.0242927i
\(217\) 643740. 643740.i 0.928028 0.928028i
\(218\) −506971. + 506971.i −0.722506 + 0.722506i
\(219\) −593493. 593493.i −0.836191 0.836191i
\(220\) −12991.4 12991.4i −0.0180967 0.0180967i
\(221\) −519126. −0.714977
\(222\) 322662. + 322662.i 0.439406 + 0.439406i
\(223\) 1.35749e6 1.82799 0.913995 0.405725i \(-0.132981\pi\)
0.913995 + 0.405725i \(0.132981\pi\)
\(224\) −114335. 114335.i −0.152250 0.152250i
\(225\) 91427.8i 0.120399i
\(226\) 165609.i 0.215682i
\(227\) 534475. + 534475.i 0.688435 + 0.688435i 0.961886 0.273451i \(-0.0881652\pi\)
−0.273451 + 0.961886i \(0.588165\pi\)
\(228\) −771124. −0.982397
\(229\) −365126. 365126.i −0.460103 0.460103i 0.438586 0.898689i \(-0.355479\pi\)
−0.898689 + 0.438586i \(0.855479\pi\)
\(230\) 691696. 0.862175
\(231\) 46736.7 + 46736.7i 0.0576272 + 0.0576272i
\(232\) −6514.49 6514.49i −0.00794622 0.00794622i
\(233\) −433959. + 433959.i −0.523672 + 0.523672i −0.918678 0.395006i \(-0.870742\pi\)
0.395006 + 0.918678i \(0.370742\pi\)
\(234\) −493606. + 493606.i −0.589306 + 0.589306i
\(235\) −1.19062e6 + 1.19062e6i −1.40639 + 1.40639i
\(236\) 10372.1 0.0121224
\(237\) 403732.i 0.466898i
\(238\) 424626.i 0.485919i
\(239\) 874959. 874959.i 0.990816 0.990816i −0.00914189 0.999958i \(-0.502910\pi\)
0.999958 + 0.00914189i \(0.00290999\pi\)
\(240\) 232901. + 232901.i 0.261002 + 0.261002i
\(241\) 822355.i 0.912046i 0.889968 + 0.456023i \(0.150726\pi\)
−0.889968 + 0.456023i \(0.849274\pi\)
\(242\) −642710. −0.705467
\(243\) 899820. 899820.i 0.977553 0.977553i
\(244\) 702519.i 0.755411i
\(245\) 482807. 0.513876
\(246\) −139449. 921925.i −0.146919 0.971310i
\(247\) −1.71845e6 −1.79223
\(248\) 368988.i 0.380963i
\(249\) −185717. + 185717.i −0.189825 + 0.189825i
\(250\) −646489. −0.654201
\(251\) 1.28351e6i 1.28592i 0.765900 + 0.642960i \(0.222294\pi\)
−0.765900 + 0.642960i \(0.777706\pi\)
\(252\) −403751. 403751.i −0.400509 0.400509i
\(253\) −39780.7 + 39780.7i −0.0390725 + 0.0390725i
\(254\) 853951.i 0.830518i
\(255\) 864969.i 0.833009i
\(256\) 65536.0 0.0625000
\(257\) 913980. 913980.i 0.863185 0.863185i −0.128522 0.991707i \(-0.541023\pi\)
0.991707 + 0.128522i \(0.0410233\pi\)
\(258\) 449426. 449426.i 0.420348 0.420348i
\(259\) −588157. + 588157.i −0.544809 + 0.544809i
\(260\) 519020. + 519020.i 0.476157 + 0.476157i
\(261\) −23004.7 23004.7i −0.0209033 0.0209033i
\(262\) 87081.1 0.0783737
\(263\) −263775. 263775.i −0.235150 0.235150i 0.579688 0.814838i \(-0.303174\pi\)
−0.814838 + 0.579688i \(0.803174\pi\)
\(264\) −26789.2 −0.0236564
\(265\) 958367. + 958367.i 0.838334 + 0.838334i
\(266\) 1.40562e6i 1.21805i
\(267\) 2.26950e6i 1.94828i
\(268\) −404133. 404133.i −0.343706 0.343706i
\(269\) −103774. −0.0874393 −0.0437197 0.999044i \(-0.513921\pi\)
−0.0437197 + 0.999044i \(0.513921\pi\)
\(270\) −61851.3 61851.3i −0.0516344 0.0516344i
\(271\) −749984. −0.620338 −0.310169 0.950681i \(-0.600386\pi\)
−0.310169 + 0.950681i \(0.600386\pi\)
\(272\) 121697. + 121697.i 0.0997369 + 0.0997369i
\(273\) −1.86718e6 1.86718e6i −1.51628 1.51628i
\(274\) 441310. 441310.i 0.355114 0.355114i
\(275\) −5528.91 + 5528.91i −0.00440867 + 0.00440867i
\(276\) 713163. 713163.i 0.563529 0.563529i
\(277\) 504092. 0.394740 0.197370 0.980329i \(-0.436760\pi\)
0.197370 + 0.980329i \(0.436760\pi\)
\(278\) 647416.i 0.502426i
\(279\) 1.30301e6i 1.00216i
\(280\) −424539. + 424539.i −0.323610 + 0.323610i
\(281\) 559472. + 559472.i 0.422681 + 0.422681i 0.886126 0.463445i \(-0.153387\pi\)
−0.463445 + 0.886126i \(0.653387\pi\)
\(282\) 2.45515e6i 1.83846i
\(283\) −1.74111e6 −1.29229 −0.646147 0.763213i \(-0.723621\pi\)
−0.646147 + 0.763213i \(0.723621\pi\)
\(284\) 583459. 583459.i 0.429254 0.429254i
\(285\) 2.86328e6i 2.08810i
\(286\) −59699.5 −0.0431575
\(287\) 1.68051e6 254192.i 1.20430 0.182162i
\(288\) 231428. 0.164412
\(289\) 967890.i 0.681682i
\(290\) −24189.1 + 24189.1i −0.0168898 + 0.0168898i
\(291\) 773069. 0.535163
\(292\) 620102.i 0.425604i
\(293\) −686907. 686907.i −0.467443 0.467443i 0.433642 0.901085i \(-0.357228\pi\)
−0.901085 + 0.433642i \(0.857228\pi\)
\(294\) 497792. 497792.i 0.335876 0.335876i
\(295\) 38513.0i 0.0257663i
\(296\) 337128.i 0.223648i
\(297\) 7114.36 0.00467999
\(298\) −982635. + 982635.i −0.640991 + 0.640991i
\(299\) 1.58928e6 1.58928e6i 1.02807 1.02807i
\(300\) 99118.8 99118.8i 0.0635847 0.0635847i
\(301\) 819226. + 819226.i 0.521180 + 0.521180i
\(302\) −776977. 776977.i −0.490220 0.490220i
\(303\) −527373. −0.329998
\(304\) 402848. + 402848.i 0.250010 + 0.250010i
\(305\) 2.60854e6 1.60564
\(306\) 429748. + 429748.i 0.262367 + 0.262367i
\(307\) 842820.i 0.510374i −0.966892 0.255187i \(-0.917863\pi\)
0.966892 0.255187i \(-0.0821371\pi\)
\(308\) 48832.0i 0.0293311i
\(309\) −1.83919e6 1.83919e6i −1.09580 1.09580i
\(310\) 1.37010e6 0.809742
\(311\) −1.51582e6 1.51582e6i −0.888682 0.888682i 0.105714 0.994397i \(-0.466287\pi\)
−0.994397 + 0.105714i \(0.966287\pi\)
\(312\) 1.07026e6 0.622446
\(313\) −498526. 498526.i −0.287625 0.287625i 0.548515 0.836140i \(-0.315193\pi\)
−0.836140 + 0.548515i \(0.815193\pi\)
\(314\) 1.32277e6 + 1.32277e6i 0.757114 + 0.757114i
\(315\) −1.49918e6 + 1.49918e6i −0.851288 + 0.851288i
\(316\) 210916. 210916.i 0.118821 0.118821i
\(317\) 2.04918e6 2.04918e6i 1.14533 1.14533i 0.157875 0.987459i \(-0.449536\pi\)
0.987459 0.157875i \(-0.0504643\pi\)
\(318\) 1.97622e6 1.09589
\(319\) 2782.32i 0.00153084i
\(320\) 243343.i 0.132845i
\(321\) 2.14794e6 2.14794e6i 1.16348 1.16348i
\(322\) 1.29997e6 + 1.29997e6i 0.698706 + 0.698706i
\(323\) 1.49613e6i 0.797926i
\(324\) −1.00624e6 −0.532526
\(325\) 220886. 220886.i 0.116000 0.116000i
\(326\) 1.62872e6i 0.848797i
\(327\) 3.88174e6 2.00751
\(328\) −408778. + 554479.i −0.209799 + 0.284578i
\(329\) −4.47531e6 −2.27947
\(330\) 99471.5i 0.0502821i
\(331\) 2.06208e6 2.06208e6i 1.03451 1.03451i 0.0351270 0.999383i \(-0.488816\pi\)
0.999383 0.0351270i \(-0.0111836\pi\)
\(332\) 194043. 0.0966169
\(333\) 1.19050e6i 0.588329i
\(334\) −1.35241e6 1.35241e6i −0.663350 0.663350i
\(335\) −1.50060e6 + 1.50060e6i −0.730553 + 0.730553i
\(336\) 875430.i 0.423032i
\(337\) 2.45553e6i 1.17780i −0.808207 0.588898i \(-0.799562\pi\)
0.808207 0.588898i \(-0.200438\pi\)
\(338\) 899890. 0.428448
\(339\) −634012. + 634012.i −0.299639 + 0.299639i
\(340\) 451874. 451874.i 0.211992 0.211992i
\(341\) −78796.7 + 78796.7i −0.0366963 + 0.0366963i
\(342\) 1.42258e6 + 1.42258e6i 0.657675 + 0.657675i
\(343\) −969199. 969199.i −0.444813 0.444813i
\(344\) −469576. −0.213949
\(345\) −2.64806e6 2.64806e6i −1.19779 1.19779i
\(346\) −2.86045e6 −1.28453
\(347\) −477195. 477195.i −0.212752 0.212752i 0.592684 0.805435i \(-0.298068\pi\)
−0.805435 + 0.592684i \(0.798068\pi\)
\(348\) 49879.7i 0.0220788i
\(349\) 1.70664e6i 0.750027i −0.927019 0.375014i \(-0.877638\pi\)
0.927019 0.375014i \(-0.122362\pi\)
\(350\) 180676. + 180676.i 0.0788372 + 0.0788372i
\(351\) −284227. −0.123139
\(352\) 13995.1 + 13995.1i 0.00602032 + 0.00602032i
\(353\) −2.87493e6 −1.22798 −0.613988 0.789315i \(-0.710436\pi\)
−0.613988 + 0.789315i \(0.710436\pi\)
\(354\) −39708.3 39708.3i −0.0168412 0.0168412i
\(355\) −2.16645e6 2.16645e6i −0.912386 0.912386i
\(356\) −1.18563e6 + 1.18563e6i −0.495818 + 0.495818i
\(357\) −1.62562e6 + 1.62562e6i −0.675070 + 0.675070i
\(358\) −1.00756e6 + 1.00756e6i −0.415494 + 0.415494i
\(359\) 2.06012e6 0.843639 0.421820 0.906680i \(-0.361392\pi\)
0.421820 + 0.906680i \(0.361392\pi\)
\(360\) 859319.i 0.349461i
\(361\) 2.47648e6i 1.00016i
\(362\) −388036. + 388036.i −0.155633 + 0.155633i
\(363\) 2.46053e6 + 2.46053e6i 0.980080 + 0.980080i
\(364\) 1.95089e6i 0.771756i
\(365\) 2.30251e6 0.904628
\(366\) 2.68950e6 2.68950e6i 1.04947 1.04947i
\(367\) 2.70793e6i 1.04948i 0.851264 + 0.524738i \(0.175837\pi\)
−0.851264 + 0.524738i \(0.824163\pi\)
\(368\) −745136. −0.286825
\(369\) −1.44352e6 + 1.95804e6i −0.551896 + 0.748609i
\(370\) −1.25180e6 −0.475368
\(371\) 3.60231e6i 1.35877i
\(372\) 1.41262e6 1.41262e6i 0.529258 0.529258i
\(373\) 3.18603e6 1.18571 0.592855 0.805309i \(-0.298001\pi\)
0.592855 + 0.805309i \(0.298001\pi\)
\(374\) 51976.2i 0.0192143i
\(375\) 2.47500e6 + 2.47500e6i 0.908858 + 0.908858i
\(376\) 1.28261e6 1.28261e6i 0.467870 0.467870i
\(377\) 111157.i 0.0402793i
\(378\) 232487.i 0.0836891i
\(379\) −4.57739e6 −1.63689 −0.818446 0.574584i \(-0.805164\pi\)
−0.818446 + 0.574584i \(0.805164\pi\)
\(380\) 1.49582e6 1.49582e6i 0.531399 0.531399i
\(381\) −3.26924e6 + 3.26924e6i −1.15381 + 1.15381i
\(382\) −1.83801e6 + 1.83801e6i −0.644451 + 0.644451i
\(383\) −1.55220e6 1.55220e6i −0.540693 0.540693i 0.383039 0.923732i \(-0.374877\pi\)
−0.923732 + 0.383039i \(0.874877\pi\)
\(384\) −250896. 250896.i −0.0868290 0.0868290i
\(385\) −181319. −0.0623436
\(386\) −748512. 748512.i −0.255700 0.255700i
\(387\) −1.65822e6 −0.562812
\(388\) −403864. 403864.i −0.136193 0.136193i
\(389\) 3.74318e6i 1.25420i 0.778939 + 0.627100i \(0.215758\pi\)
−0.778939 + 0.627100i \(0.784242\pi\)
\(390\) 3.97399e6i 1.32302i
\(391\) −1.38367e6 1.38367e6i −0.457712 0.457712i
\(392\) −520109. −0.170954
\(393\) −333378. 333378.i −0.108882 0.108882i
\(394\) −3.39629e6 −1.10221
\(395\) −783157. 783157.i −0.252555 0.252555i
\(396\) 49421.0 + 49421.0i 0.0158370 + 0.0158370i
\(397\) 1.36197e6 1.36197e6i 0.433703 0.433703i −0.456183 0.889886i \(-0.650784\pi\)
0.889886 + 0.456183i \(0.150784\pi\)
\(398\) 1.54052e6 1.54052e6i 0.487482 0.487482i
\(399\) −5.38124e6 + 5.38124e6i −1.69219 + 1.69219i
\(400\) −103563. −0.0323633
\(401\) 1.40614e6i 0.436683i −0.975872 0.218342i \(-0.929935\pi\)
0.975872 0.218342i \(-0.0700647\pi\)
\(402\) 3.09434e6i 0.954998i
\(403\) 3.14802e6 3.14802e6i 0.965549 0.965549i
\(404\) 275508. + 275508.i 0.0839811 + 0.0839811i
\(405\) 3.73631e6i 1.13189i
\(406\) −90922.0 −0.0273750
\(407\) 71993.2 71993.2i 0.0215430 0.0215430i
\(408\) 931797.i 0.277122i
\(409\) 4.25862e6 1.25881 0.629406 0.777077i \(-0.283298\pi\)
0.629406 + 0.777077i \(0.283298\pi\)
\(410\) 2.05885e6 + 1.51784e6i 0.604874 + 0.445930i
\(411\) −3.37899e6 −0.986693
\(412\) 1.92165e6i 0.557738i
\(413\) 72381.3 72381.3i 0.0208810 0.0208810i
\(414\) −2.63131e6 −0.754519
\(415\) 720506.i 0.205361i
\(416\) −559120. 559120.i −0.158406 0.158406i
\(417\) −2.47854e6 + 2.47854e6i −0.698002 + 0.698002i
\(418\) 172055.i 0.0481644i
\(419\) 5.77168e6i 1.60608i 0.595925 + 0.803040i \(0.296786\pi\)
−0.595925 + 0.803040i \(0.703214\pi\)
\(420\) 3.25058e6 0.899161
\(421\) 3.32384e6 3.32384e6i 0.913977 0.913977i −0.0826052 0.996582i \(-0.526324\pi\)
0.996582 + 0.0826052i \(0.0263241\pi\)
\(422\) 2.09852e6 2.09852e6i 0.573630 0.573630i
\(423\) 4.52929e6 4.52929e6i 1.23078 1.23078i
\(424\) −1.03241e6 1.03241e6i −0.278893 0.278893i
\(425\) −192310. 192310.i −0.0516451 0.0516451i
\(426\) −4.46739e6 −1.19270
\(427\) 4.90249e6 + 4.90249e6i 1.30121 + 1.30121i
\(428\) −2.24424e6 −0.592188
\(429\) 228552. + 228552.i 0.0599571 + 0.0599571i
\(430\) 1.74359e6i 0.454751i
\(431\) 1.94687e6i 0.504829i 0.967619 + 0.252415i \(0.0812247\pi\)
−0.967619 + 0.252415i \(0.918775\pi\)
\(432\) 66630.0 + 66630.0i 0.0171775 + 0.0171775i
\(433\) 6.11452e6 1.56727 0.783633 0.621224i \(-0.213364\pi\)
0.783633 + 0.621224i \(0.213364\pi\)
\(434\) 2.57496e6 + 2.57496e6i 0.656215 + 0.656215i
\(435\) 185209. 0.0469288
\(436\) −2.02788e6 2.02788e6i −0.510889 0.510889i
\(437\) −4.58033e6 4.58033e6i −1.14734 1.14734i
\(438\) 2.37397e6 2.37397e6i 0.591277 0.591277i
\(439\) 5.12339e6 5.12339e6i 1.26881 1.26881i 0.322104 0.946704i \(-0.395610\pi\)
0.946704 0.322104i \(-0.104390\pi\)
\(440\) 51965.5 51965.5i 0.0127963 0.0127963i
\(441\) −1.83666e6 −0.449711
\(442\) 2.07650e6i 0.505565i
\(443\) 5.66966e6i 1.37261i −0.727313 0.686306i \(-0.759231\pi\)
0.727313 0.686306i \(-0.240769\pi\)
\(444\) −1.29065e6 + 1.29065e6i −0.310707 + 0.310707i
\(445\) 4.40237e6 + 4.40237e6i 1.05387 + 1.05387i
\(446\) 5.42995e6i 1.29258i
\(447\) 7.52377e6 1.78101
\(448\) 457339. 457339.i 0.107657 0.107657i
\(449\) 6.32951e6i 1.48168i 0.671681 + 0.740840i \(0.265572\pi\)
−0.671681 + 0.740840i \(0.734428\pi\)
\(450\) −365711. −0.0851348
\(451\) −205702. + 31114.3i −0.0476209 + 0.00720308i
\(452\) 662437. 0.152510
\(453\) 5.94910e6i 1.36209i
\(454\) −2.13790e6 + 2.13790e6i −0.486797 + 0.486797i
\(455\) 7.24390e6 1.64038
\(456\) 3.08449e6i 0.694659i
\(457\) 631271. + 631271.i 0.141392 + 0.141392i 0.774260 0.632868i \(-0.218122\pi\)
−0.632868 + 0.774260i \(0.718122\pi\)
\(458\) 1.46051e6 1.46051e6i 0.325342 0.325342i
\(459\) 247456.i 0.0548234i
\(460\) 2.76678e6i 0.609650i
\(461\) −3.69120e6 −0.808938 −0.404469 0.914552i \(-0.632544\pi\)
−0.404469 + 0.914552i \(0.632544\pi\)
\(462\) −186947. + 186947.i −0.0407486 + 0.0407486i
\(463\) 5.56214e6 5.56214e6i 1.20584 1.20584i 0.233477 0.972362i \(-0.424990\pi\)
0.972362 0.233477i \(-0.0750103\pi\)
\(464\) 26058.0 26058.0i 0.00561882 0.00561882i
\(465\) −5.24523e6 5.24523e6i −1.12495 1.12495i
\(466\) −1.73584e6 1.73584e6i −0.370292 0.370292i
\(467\) −2.56874e6 −0.545040 −0.272520 0.962150i \(-0.587857\pi\)
−0.272520 + 0.962150i \(0.587857\pi\)
\(468\) −1.97442e6 1.97442e6i −0.416702 0.416702i
\(469\) −5.64044e6 −1.18408
\(470\) −4.76249e6 4.76249e6i −0.994465 0.994465i
\(471\) 1.01281e7i 2.10366i
\(472\) 41488.5i 0.00857182i
\(473\) −100277. 100277.i −0.0206086 0.0206086i
\(474\) −1.61493e6 −0.330147
\(475\) −636596. 636596.i −0.129458 0.129458i
\(476\) 1.69850e6 0.343597
\(477\) −3.64576e6 3.64576e6i −0.733655 0.733655i
\(478\) 3.49984e6 + 3.49984e6i 0.700613 + 0.700613i
\(479\) −6.16864e6 + 6.16864e6i −1.22843 + 1.22843i −0.263874 + 0.964557i \(0.585000\pi\)
−0.964557 + 0.263874i \(0.915000\pi\)
\(480\) −931606. + 931606.i −0.184556 + 0.184556i
\(481\) −2.87621e6 + 2.87621e6i −0.566836 + 0.566836i
\(482\) −3.28942e6 −0.644914
\(483\) 9.95354e6i 1.94138i
\(484\) 2.57084e6i 0.498840i
\(485\) −1.49960e6 + 1.49960e6i −0.289481 + 0.289481i
\(486\) 3.59928e6 + 3.59928e6i 0.691234 + 0.691234i
\(487\) 3.72545e6i 0.711798i −0.934524 0.355899i \(-0.884175\pi\)
0.934524 0.355899i \(-0.115825\pi\)
\(488\) −2.81007e6 −0.534156
\(489\) 6.23535e6 6.23535e6i 1.17920 1.17920i
\(490\) 1.93123e6i 0.363365i
\(491\) −1.12891e6 −0.211327 −0.105663 0.994402i \(-0.533697\pi\)
−0.105663 + 0.994402i \(0.533697\pi\)
\(492\) 3.68770e6 557798.i 0.686820 0.103888i
\(493\) 96776.2 0.0179329
\(494\) 6.87378e6i 1.26730i
\(495\) 183506. 183506.i 0.0336618 0.0336618i
\(496\) −1.47595e6 −0.269382
\(497\) 8.14327e6i 1.47879i
\(498\) −742867. 742867.i −0.134226 0.134226i
\(499\) −6.36082e6 + 6.36082e6i −1.14357 + 1.14357i −0.155775 + 0.987793i \(0.549787\pi\)
−0.987793 + 0.155775i \(0.950213\pi\)
\(500\) 2.58596e6i 0.462590i
\(501\) 1.03551e7i 1.84314i
\(502\) −5.13402e6 −0.909282
\(503\) −3.31860e6 + 3.31860e6i −0.584836 + 0.584836i −0.936228 0.351392i \(-0.885708\pi\)
0.351392 + 0.936228i \(0.385708\pi\)
\(504\) 1.61500e6 1.61500e6i 0.283203 0.283203i
\(505\) 1.02300e6 1.02300e6i 0.178503 0.178503i
\(506\) −159123. 159123.i −0.0276284 0.0276284i
\(507\) −3.44511e6 3.44511e6i −0.595227 0.595227i
\(508\) 3.41581e6 0.587265
\(509\) −6.16715e6 6.16715e6i −1.05509 1.05509i −0.998391 0.0566993i \(-0.981942\pi\)
−0.0566993 0.998391i \(-0.518058\pi\)
\(510\) −3.45987e6 −0.589027
\(511\) 4.32734e6 + 4.32734e6i 0.733110 + 0.733110i
\(512\) 262144.i 0.0441942i
\(513\) 819145.i 0.137425i
\(514\) 3.65592e6 + 3.65592e6i 0.610364 + 0.610364i
\(515\) 7.13530e6 1.18548
\(516\) 1.79771e6 + 1.79771e6i 0.297231 + 0.297231i
\(517\) 547799. 0.0901353
\(518\) −2.35263e6 2.35263e6i −0.385238 0.385238i
\(519\) 1.09508e7 + 1.09508e7i 1.78455 + 1.78455i
\(520\) −2.07608e6 + 2.07608e6i −0.336694 + 0.336694i
\(521\) 1.00156e6 1.00156e6i 0.161652 0.161652i −0.621646 0.783298i \(-0.713536\pi\)
0.783298 + 0.621646i \(0.213536\pi\)
\(522\) 92018.6 92018.6i 0.0147809 0.0147809i
\(523\) 6.93475e6 1.10860 0.554302 0.832315i \(-0.312985\pi\)
0.554302 + 0.832315i \(0.312985\pi\)
\(524\) 348324.i 0.0554186i
\(525\) 1.38339e6i 0.219051i
\(526\) 1.05510e6 1.05510e6i 0.166276 0.166276i
\(527\) −2.74075e6 2.74075e6i −0.429876 0.429876i
\(528\) 107157.i 0.0167276i
\(529\) 2.03577e6 0.316293
\(530\) −3.83347e6 + 3.83347e6i −0.592792 + 0.592792i
\(531\) 146509.i 0.0225490i
\(532\) 5.62250e6 0.861292
\(533\) 8.21802e6 1.24305e6i 1.25299 0.189527i
\(534\) 9.07801e6 1.37764
\(535\) 8.33312e6i 1.25870i
\(536\) 1.61653e6 1.61653e6i 0.243037 0.243037i
\(537\) 7.71463e6 1.15446
\(538\) 415095.i 0.0618289i
\(539\) −111068. 111068.i −0.0164672 0.0164672i
\(540\) 247405. 247405.i 0.0365111 0.0365111i
\(541\) 6.77764e6i 0.995602i −0.867291 0.497801i \(-0.834141\pi\)
0.867291 0.497801i \(-0.165859\pi\)
\(542\) 2.99993e6i 0.438645i
\(543\) 2.97109e6 0.432430
\(544\) −486786. + 486786.i −0.0705246 + 0.0705246i
\(545\) −7.52978e6 + 7.52978e6i −1.08590 + 1.08590i
\(546\) 7.46872e6 7.46872e6i 1.07217 1.07217i
\(547\) −2.94320e6 2.94320e6i −0.420583 0.420583i 0.464822 0.885404i \(-0.346118\pi\)
−0.885404 + 0.464822i \(0.846118\pi\)
\(548\) 1.76524e6 + 1.76524e6i 0.251103 + 0.251103i
\(549\) −9.92324e6 −1.40515
\(550\) −22115.6 22115.6i −0.00311740 0.00311740i
\(551\) 320355. 0.0449523
\(552\) 2.85265e6 + 2.85265e6i 0.398475 + 0.398475i
\(553\) 2.94373e6i 0.409341i
\(554\) 2.01637e6i 0.279123i
\(555\) 4.79234e6 + 4.79234e6i 0.660412 + 0.660412i
\(556\) 2.58967e6 0.355268
\(557\) −3.96331e6 3.96331e6i −0.541277 0.541277i 0.382626 0.923903i \(-0.375020\pi\)
−0.923903 + 0.382626i \(0.875020\pi\)
\(558\) −5.21204e6 −0.708634
\(559\) 4.00618e6 + 4.00618e6i 0.542252 + 0.542252i
\(560\) −1.69816e6 1.69816e6i −0.228827 0.228827i
\(561\) 198984. 198984.i 0.0266938 0.0266938i
\(562\) −2.23789e6 + 2.23789e6i −0.298881 + 0.298881i
\(563\) 4.95154e6 4.95154e6i 0.658368 0.658368i −0.296626 0.954994i \(-0.595861\pi\)
0.954994 + 0.296626i \(0.0958613\pi\)
\(564\) −9.82060e6 −1.29999
\(565\) 2.45971e6i 0.324162i
\(566\) 6.96446e6i 0.913790i
\(567\) −7.02201e6 + 7.02201e6i −0.917284 + 0.917284i
\(568\) 2.33384e6 + 2.33384e6i 0.303529 + 0.303529i
\(569\) 6.00322e6i 0.777326i −0.921380 0.388663i \(-0.872937\pi\)
0.921380 0.388663i \(-0.127063\pi\)
\(570\) −1.14531e7 −1.47651
\(571\) −8.37236e6 + 8.37236e6i −1.07463 + 1.07463i −0.0776459 + 0.996981i \(0.524740\pi\)
−0.996981 + 0.0776459i \(0.975260\pi\)
\(572\) 238798.i 0.0305169i
\(573\) 1.40732e7 1.79063
\(574\) 1.01677e6 + 6.72204e6i 0.128808 + 0.851571i
\(575\) 1.17749e6 0.148521
\(576\) 925711.i 0.116257i
\(577\) −3.02191e6 + 3.02191e6i −0.377870 + 0.377870i −0.870333 0.492463i \(-0.836097\pi\)
0.492463 + 0.870333i \(0.336097\pi\)
\(578\) 3.87156e6 0.482022
\(579\) 5.73116e6i 0.710470i
\(580\) −96756.4 96756.4i −0.0119429 0.0119429i
\(581\) 1.35412e6 1.35412e6i 0.166424 0.166424i
\(582\) 3.09228e6i 0.378417i
\(583\) 440939.i 0.0537288i
\(584\) −2.48041e6 −0.300947
\(585\) −7.33127e6 + 7.33127e6i −0.885706 + 0.885706i
\(586\) 2.74763e6 2.74763e6i 0.330532 0.330532i
\(587\) −6.80234e6 + 6.80234e6i −0.814823 + 0.814823i −0.985353 0.170530i \(-0.945452\pi\)
0.170530 + 0.985353i \(0.445452\pi\)
\(588\) 1.99117e6 + 1.99117e6i 0.237500 + 0.237500i
\(589\) −9.07262e6 9.07262e6i −1.07757 1.07757i
\(590\) 154052. 0.0182195
\(591\) 1.30022e7 + 1.30022e7i 1.53126 + 1.53126i
\(592\) 1.34851e6 0.158143
\(593\) 3.59558e6 + 3.59558e6i 0.419887 + 0.419887i 0.885165 0.465278i \(-0.154045\pi\)
−0.465278 + 0.885165i \(0.654045\pi\)
\(594\) 28457.5i 0.00330925i
\(595\) 6.30675e6i 0.730320i
\(596\) −3.93054e6 3.93054e6i −0.453249 0.453249i
\(597\) −1.17953e7 −1.35448
\(598\) 6.35712e6 + 6.35712e6i 0.726955 + 0.726955i
\(599\) −1.13490e7 −1.29239 −0.646193 0.763174i \(-0.723640\pi\)
−0.646193 + 0.763174i \(0.723640\pi\)
\(600\) 396475. + 396475.i 0.0449612 + 0.0449612i
\(601\) −8.14940e6 8.14940e6i −0.920321 0.920321i 0.0767306 0.997052i \(-0.475552\pi\)
−0.997052 + 0.0767306i \(0.975552\pi\)
\(602\) −3.27691e6 + 3.27691e6i −0.368530 + 0.368530i
\(603\) 5.70847e6 5.70847e6i 0.639332 0.639332i
\(604\) 3.10791e6 3.10791e6i 0.346638 0.346638i
\(605\) −9.54584e6 −1.06029
\(606\) 2.10949e6i 0.233344i
\(607\) 1.34408e7i 1.48066i 0.672246 + 0.740328i \(0.265330\pi\)
−0.672246 + 0.740328i \(0.734670\pi\)
\(608\) −1.61139e6 + 1.61139e6i −0.176784 + 0.176784i
\(609\) 348082. + 348082.i 0.0380311 + 0.0380311i
\(610\) 1.04341e7i 1.13536i
\(611\) −2.18852e7 −2.37163
\(612\) −1.71899e6 + 1.71899e6i −0.185522 + 0.185522i
\(613\) 6.95779e6i 0.747860i −0.927457 0.373930i \(-0.878010\pi\)
0.927457 0.373930i \(-0.121990\pi\)
\(614\) 3.37128e6 0.360889
\(615\) −2.07117e6 1.36929e7i −0.220815 1.45985i
\(616\) 195328. 0.0207402
\(617\) 5.68522e6i 0.601222i 0.953747 + 0.300611i \(0.0971905\pi\)
−0.953747 + 0.300611i \(0.902809\pi\)
\(618\) 7.35676e6 7.35676e6i 0.774846 0.774846i
\(619\) 2.05947e6 0.216037 0.108019 0.994149i \(-0.465549\pi\)
0.108019 + 0.994149i \(0.465549\pi\)
\(620\) 5.48039e6i 0.572574i
\(621\) −757575. 757575.i −0.0788309 0.0788309i
\(622\) 6.06328e6 6.06328e6i 0.628393 0.628393i
\(623\) 1.65476e7i 1.70811i
\(624\) 4.28103e6i 0.440136i
\(625\) −1.08662e7 −1.11270
\(626\) 1.99410e6 1.99410e6i 0.203382 0.203382i
\(627\) 658689. 658689.i 0.0669131 0.0669131i
\(628\) −5.29109e6 + 5.29109e6i −0.535360 + 0.535360i
\(629\) 2.50411e6 + 2.50411e6i 0.252364 + 0.252364i
\(630\) −5.99671e6 5.99671e6i −0.601952 0.601952i
\(631\) 4.16311e6 0.416240 0.208120 0.978103i \(-0.433265\pi\)
0.208120 + 0.978103i \(0.433265\pi\)
\(632\) 843665. + 843665.i 0.0840189 + 0.0840189i
\(633\) −1.60678e7 −1.59385
\(634\) 8.19672e6 + 8.19672e6i 0.809873 + 0.809873i
\(635\) 1.26833e7i 1.24824i
\(636\) 7.90489e6i 0.774913i
\(637\) 4.43730e6 + 4.43730e6i 0.433282 + 0.433282i
\(638\) 11129.3 0.00108247
\(639\) 8.24149e6 + 8.24149e6i 0.798461 + 0.798461i
\(640\) 973373. 0.0939354
\(641\) 7.14026e6 + 7.14026e6i 0.686387 + 0.686387i 0.961431 0.275045i \(-0.0886927\pi\)
−0.275045 + 0.961431i \(0.588693\pi\)
\(642\) 8.59175e6 + 8.59175e6i 0.822705 + 0.822705i
\(643\) 1.05059e6 1.05059e6i 0.100209 0.100209i −0.655225 0.755434i \(-0.727426\pi\)
0.755434 + 0.655225i \(0.227426\pi\)
\(644\) −5.19989e6 + 5.19989e6i −0.494060 + 0.494060i
\(645\) 6.67510e6 6.67510e6i 0.631769 0.631769i
\(646\) −5.98452e6 −0.564219
\(647\) 8.60269e6i 0.807930i −0.914774 0.403965i \(-0.867632\pi\)
0.914774 0.403965i \(-0.132368\pi\)
\(648\) 4.02498e6i 0.376553i
\(649\) −8859.80 + 8859.80i −0.000825681 + 0.000825681i
\(650\) 883543. + 883543.i 0.0820247 + 0.0820247i
\(651\) 1.97158e7i 1.82331i
\(652\) −6.51490e6 −0.600190
\(653\) 1.39043e7 1.39043e7i 1.27605 1.27605i 0.333184 0.942862i \(-0.391877\pi\)
0.942862 0.333184i \(-0.108123\pi\)
\(654\) 1.55269e7i 1.41952i
\(655\) 1.29337e6 0.117793
\(656\) −2.21792e6 1.63511e6i −0.201227 0.148350i
\(657\) −8.75907e6 −0.791671
\(658\) 1.79013e7i 1.61183i
\(659\) −6.35836e6 + 6.35836e6i −0.570337 + 0.570337i −0.932223 0.361885i \(-0.882133\pi\)
0.361885 + 0.932223i \(0.382133\pi\)
\(660\) −397886. −0.0355548
\(661\) 1.18946e7i 1.05888i −0.848349 0.529438i \(-0.822403\pi\)
0.848349 0.529438i \(-0.177597\pi\)
\(662\) 8.24830e6 + 8.24830e6i 0.731509 + 0.731509i
\(663\) −7.94961e6 + 7.94961e6i −0.702364 + 0.702364i
\(664\) 776172.i 0.0683184i
\(665\) 2.08770e7i 1.83069i
\(666\) 4.76201e6 0.416011
\(667\) −296276. + 296276.i −0.0257859 + 0.0257859i
\(668\) 5.40965e6 5.40965e6i 0.469060 0.469060i
\(669\) 2.07878e7 2.07878e7i 1.79574 1.79574i
\(670\) −6.00238e6 6.00238e6i −0.516579 0.516579i
\(671\) −600087. 600087.i −0.0514527 0.0514527i
\(672\) −3.50172e6 −0.299129
\(673\) 3.18643e6 + 3.18643e6i 0.271185 + 0.271185i 0.829577 0.558392i \(-0.188581\pi\)
−0.558392 + 0.829577i \(0.688581\pi\)
\(674\) 9.82212e6 0.832828
\(675\) −105291. 105291.i −0.00889474 0.00889474i
\(676\) 3.59956e6i 0.302958i
\(677\) 7.44105e6i 0.623968i 0.950087 + 0.311984i \(0.100994\pi\)
−0.950087 + 0.311984i \(0.899006\pi\)
\(678\) −2.53605e6 2.53605e6i −0.211877 0.211877i
\(679\) −5.63669e6 −0.469191
\(680\) 1.80750e6 + 1.80750e6i 0.149901 + 0.149901i
\(681\) 1.63693e7 1.35258
\(682\) −315187. 315187.i −0.0259482 0.0259482i
\(683\) −6.42073e6 6.42073e6i −0.526663 0.526663i 0.392913 0.919576i \(-0.371467\pi\)
−0.919576 + 0.392913i \(0.871467\pi\)
\(684\) −5.69031e6 + 5.69031e6i −0.465046 + 0.465046i
\(685\) 6.55455e6 6.55455e6i 0.533724 0.533724i
\(686\) 3.87680e6 3.87680e6i 0.314530 0.314530i
\(687\) −1.11827e7 −0.903971
\(688\) 1.87830e6i 0.151285i
\(689\) 1.76160e7i 1.41371i
\(690\) 1.05922e7 1.05922e7i 0.846965 0.846965i
\(691\) −7.89473e6 7.89473e6i −0.628988 0.628988i 0.318826 0.947813i \(-0.396712\pi\)
−0.947813 + 0.318826i \(0.896712\pi\)
\(692\) 1.14418e7i 0.908298i
\(693\) 689763. 0.0545591
\(694\) 1.90878e6 1.90878e6i 0.150438 0.150438i
\(695\) 9.61574e6i 0.755128i
\(696\) −199519. −0.0156121
\(697\) −1.08224e6 7.15485e6i −0.0843801 0.557852i
\(698\) 6.82654e6 0.530350
\(699\) 1.32908e7i 1.02887i
\(700\) −722705. + 722705.i −0.0557463 + 0.0557463i
\(701\) 2.74383e6 0.210893 0.105446 0.994425i \(-0.466373\pi\)
0.105446 + 0.994425i \(0.466373\pi\)
\(702\) 1.13691e6i 0.0870727i
\(703\) 8.28927e6 + 8.28927e6i 0.632598 + 0.632598i
\(704\) −55980.4 + 55980.4i −0.00425701 + 0.00425701i
\(705\) 3.64651e7i 2.76315i
\(706\) 1.14997e7i 0.868310i
\(707\) 3.84524e6 0.289317
\(708\) 158833. 158833.i 0.0119085 0.0119085i
\(709\) −4.13423e6 + 4.13423e6i −0.308872 + 0.308872i −0.844472 0.535600i \(-0.820086\pi\)
0.535600 + 0.844472i \(0.320086\pi\)
\(710\) 8.66582e6 8.66582e6i 0.645155 0.645155i
\(711\) 2.97924e6 + 2.97924e6i 0.221020 + 0.221020i
\(712\) −4.74250e6 4.74250e6i −0.350596 0.350596i
\(713\) 1.67814e7 1.23624
\(714\) −6.50249e6 6.50249e6i −0.477347 0.477347i
\(715\) −886687. −0.0648642
\(716\) −4.03025e6 4.03025e6i −0.293799 0.293799i
\(717\) 2.67973e7i 1.94667i
\(718\) 8.24049e6i 0.596543i
\(719\) 6.43374e6 + 6.43374e6i 0.464131 + 0.464131i 0.900007 0.435875i \(-0.143561\pi\)
−0.435875 + 0.900007i \(0.643561\pi\)
\(720\) 3.43728e6 0.247106
\(721\) 1.34101e7 + 1.34101e7i 0.960713 + 0.960713i
\(722\) −9.90594e6 −0.707217
\(723\) 1.25931e7 + 1.25931e7i 0.895956 + 0.895956i
\(724\) −1.55215e6 1.55215e6i −0.110049 0.110049i
\(725\) −41177.8 + 41177.8i −0.00290950 + 0.00290950i
\(726\) −9.84210e6 + 9.84210e6i −0.693021 + 0.693021i
\(727\) 1.42958e7 1.42958e7i 1.00317 1.00317i 0.00317284 0.999995i \(-0.498990\pi\)
0.999995 0.00317284i \(-0.00100995\pi\)
\(728\) −7.80357e6 −0.545714
\(729\) 1.22764e7i 0.855562i
\(730\) 9.21005e6i 0.639668i
\(731\) 3.48790e6 3.48790e6i 0.241418 0.241418i
\(732\) 1.07580e7 + 1.07580e7i 0.742084 + 0.742084i
\(733\) 2.84845e6i 0.195816i −0.995195 0.0979081i \(-0.968785\pi\)
0.995195 0.0979081i \(-0.0312151\pi\)
\(734\) −1.08317e7 −0.742092
\(735\) 7.39344e6 7.39344e6i 0.504810 0.504810i
\(736\) 2.98055e6i 0.202816i
\(737\) 690416. 0.0468211
\(738\) −7.83215e6 5.77408e6i −0.529346 0.390249i
\(739\) 7.85361e6 0.529003 0.264502 0.964385i \(-0.414793\pi\)
0.264502 + 0.964385i \(0.414793\pi\)
\(740\) 5.00719e6i 0.336136i
\(741\) −2.63153e7 + 2.63153e7i −1.76061 + 1.76061i
\(742\) −1.44092e7 −0.960796
\(743\) 1.13682e7i 0.755477i −0.925912 0.377738i \(-0.876702\pi\)
0.925912 0.377738i \(-0.123298\pi\)
\(744\) 5.65048e6 + 5.65048e6i 0.374242 + 0.374242i
\(745\) −1.45946e7 + 1.45946e7i −0.963387 + 0.963387i
\(746\) 1.27441e7i 0.838424i
\(747\) 2.74090e6i 0.179718i
\(748\) −207905. −0.0135866
\(749\) −1.56613e7 + 1.56613e7i −1.02005 + 1.02005i
\(750\) −9.89998e6 + 9.89998e6i −0.642660 + 0.642660i
\(751\) 1.82965e7 1.82965e7i 1.18377 1.18377i 0.205010 0.978760i \(-0.434277\pi\)
0.978760 0.205010i \(-0.0657227\pi\)
\(752\) 5.13044e6 + 5.13044e6i 0.330834 + 0.330834i
\(753\) 1.96549e7 + 1.96549e7i 1.26323 + 1.26323i
\(754\) −444626. −0.0284818
\(755\) −1.15400e7 1.15400e7i −0.736784 0.736784i
\(756\) 929947. 0.0591771
\(757\) 5.67397e6 + 5.67397e6i 0.359871 + 0.359871i 0.863765 0.503894i \(-0.168100\pi\)
−0.503894 + 0.863765i \(0.668100\pi\)
\(758\) 1.83096e7i 1.15746i
\(759\) 1.21836e6i 0.0767663i
\(760\) 5.98329e6 + 5.98329e6i 0.375756 + 0.375756i
\(761\) 1.82708e6 0.114366 0.0571829 0.998364i \(-0.481788\pi\)
0.0571829 + 0.998364i \(0.481788\pi\)
\(762\) −1.30769e7 1.30769e7i −0.815866 0.815866i
\(763\) −2.83029e7 −1.76003
\(764\) −7.35205e6 7.35205e6i −0.455696 0.455696i
\(765\) 6.38282e6 + 6.38282e6i 0.394329 + 0.394329i
\(766\) 6.20880e6 6.20880e6i 0.382328 0.382328i
\(767\) 353959. 353959.i 0.0217252 0.0217252i
\(768\) 1.00358e6 1.00358e6i 0.0613974 0.0613974i
\(769\) −5.37745e6 −0.327914 −0.163957 0.986467i \(-0.552426\pi\)
−0.163957 + 0.986467i \(0.552426\pi\)
\(770\) 725277.i 0.0440836i
\(771\) 2.79924e7i 1.69591i
\(772\) 2.99405e6 2.99405e6i 0.180807 0.180807i
\(773\) −1.97010e7 1.97010e7i −1.18588 1.18588i −0.978197 0.207681i \(-0.933408\pi\)
−0.207681 0.978197i \(-0.566592\pi\)
\(774\) 6.63286e6i 0.397968i
\(775\) 2.33236e6 0.139489
\(776\) 1.61546e6 1.61546e6i 0.0963033 0.0963033i
\(777\) 1.80134e7i 1.07040i
\(778\) −1.49727e7 −0.886853
\(779\) −3.58249e6 2.36845e7i −0.211515 1.39836i
\(780\) 1.58960e7 0.935515
\(781\) 996774.i 0.0584749i
\(782\) 5.53470e6 5.53470e6i 0.323651 0.323651i
\(783\) 52985.9 0.00308856
\(784\) 2.08044e6i 0.120883i
\(785\) 1.96465e7 + 1.96465e7i 1.13792 + 1.13792i
\(786\) 1.33351e6 1.33351e6i 0.0769911 0.0769911i
\(787\) 1.47773e7i 0.850470i −0.905083 0.425235i \(-0.860191\pi\)
0.905083 0.425235i \(-0.139809\pi\)
\(788\) 1.35852e7i 0.779379i
\(789\) −8.07861e6 −0.462003
\(790\) 3.13263e6 3.13263e6i 0.178583 0.178583i
\(791\) 4.62278e6 4.62278e6i 0.262701 0.262701i
\(792\) −197684. + 197684.i −0.0111985 + 0.0111985i
\(793\) 2.39741e7 + 2.39741e7i 1.35382 + 1.35382i
\(794\) 5.44789e6 + 5.44789e6i 0.306674 + 0.306674i
\(795\) 2.93518e7 1.64709
\(796\) 6.16206e6 + 6.16206e6i 0.344702 + 0.344702i
\(797\) −1.56507e7 −0.872744 −0.436372 0.899766i \(-0.643737\pi\)
−0.436372 + 0.899766i \(0.643737\pi\)
\(798\) −2.15250e7 2.15250e7i −1.19656 1.19656i
\(799\) 1.90539e7i 1.05588i
\(800\) 414250.i 0.0228843i
\(801\) −1.67472e7 1.67472e7i −0.922277 0.922277i
\(802\) 5.62455e6 0.308782
\(803\) −529687. 529687.i −0.0289888 0.0289888i
\(804\) −1.23773e7 −0.675285
\(805\) 1.93078e7 + 1.93078e7i 1.05013 + 1.05013i
\(806\) 1.25921e7 + 1.25921e7i 0.682746 + 0.682746i
\(807\) −1.58913e6 + 1.58913e6i −0.0858968 + 0.0858968i
\(808\) −1.10203e6 + 1.10203e6i −0.0593836 + 0.0593836i
\(809\) 5.67170e6 5.67170e6i 0.304679 0.304679i −0.538162 0.842841i \(-0.680881\pi\)
0.842841 + 0.538162i \(0.180881\pi\)
\(810\) −1.49452e7 −0.800368
\(811\) 1.36785e7i 0.730272i 0.930954 + 0.365136i \(0.118978\pi\)
−0.930954 + 0.365136i \(0.881022\pi\)
\(812\) 363688.i 0.0193570i
\(813\) −1.14848e7 + 1.14848e7i −0.609394 + 0.609394i
\(814\) 287973. + 287973.i 0.0152332 + 0.0152332i
\(815\) 2.41906e7i 1.27571i
\(816\) 3.72719e6 0.195955
\(817\) 1.15459e7 1.15459e7i 0.605162 0.605162i
\(818\) 1.70345e7i 0.890114i
\(819\) −2.75568e7 −1.43555
\(820\) −6.07137e6 + 8.23540e6i −0.315320 + 0.427711i
\(821\) 2.48377e7 1.28604 0.643019 0.765850i \(-0.277681\pi\)
0.643019 + 0.765850i \(0.277681\pi\)
\(822\) 1.35160e7i 0.697698i
\(823\) −1.90881e7 + 1.90881e7i −0.982341 + 0.982341i −0.999847 0.0175057i \(-0.994427\pi\)
0.0175057 + 0.999847i \(0.494427\pi\)
\(824\) −7.68658e6 −0.394380
\(825\) 169333.i 0.00866179i
\(826\) 289525. + 289525.i 0.0147651 + 0.0147651i
\(827\) −1.15768e7 + 1.15768e7i −0.588608 + 0.588608i −0.937254 0.348647i \(-0.886641\pi\)
0.348647 + 0.937254i \(0.386641\pi\)
\(828\) 1.05252e7i 0.533526i
\(829\) 1.37041e7i 0.692569i 0.938130 + 0.346284i \(0.112557\pi\)
−0.938130 + 0.346284i \(0.887443\pi\)
\(830\) 2.88202e6 0.145212
\(831\) 7.71940e6 7.71940e6i 0.387776 0.387776i
\(832\) 2.23648e6 2.23648e6i 0.112010 0.112010i
\(833\) 3.86325e6 3.86325e6i 0.192903 0.192903i
\(834\) −9.91418e6 9.91418e6i −0.493562 0.493562i
\(835\) −2.00867e7 2.00867e7i −0.996993 0.996993i
\(836\) −688220. −0.0340574
\(837\) −1.50059e6 1.50059e6i −0.0740369 0.0740369i
\(838\) −2.30867e7 −1.13567
\(839\) −8.17870e6 8.17870e6i −0.401125 0.401125i 0.477505 0.878629i \(-0.341541\pi\)
−0.878629 + 0.477505i \(0.841541\pi\)
\(840\) 1.30023e7i 0.635803i
\(841\) 2.04904e7i 0.998990i
\(842\) 1.32954e7 + 1.32954e7i 0.646279 + 0.646279i
\(843\) 1.71349e7 0.830448
\(844\) 8.39407e6 + 8.39407e6i 0.405617 + 0.405617i
\(845\) 1.33656e7 0.643942
\(846\) 1.81172e7 + 1.81172e7i 0.870291 + 0.870291i
\(847\) −1.79404e7 1.79404e7i −0.859260 0.859260i
\(848\) 4.12964e6 4.12964e6i 0.197207 0.197207i
\(849\) −2.66625e7 + 2.66625e7i −1.26950 + 1.26950i
\(850\) 769239. 769239.i 0.0365186 0.0365186i
\(851\) −1.53324e7 −0.725750
\(852\) 1.78695e7i 0.843363i
\(853\) 2.39894e7i 1.12888i −0.825476 0.564438i \(-0.809093\pi\)
0.825476 0.564438i \(-0.190907\pi\)
\(854\) −1.96099e7 + 1.96099e7i −0.920093 + 0.920093i
\(855\) 2.11288e7 + 2.11288e7i 0.988462 + 0.988462i
\(856\) 8.97695e6i 0.418740i
\(857\) 4.05571e7 1.88632 0.943160 0.332340i \(-0.107838\pi\)
0.943160 + 0.332340i \(0.107838\pi\)
\(858\) −914206. + 914206.i −0.0423961 + 0.0423961i
\(859\) 1.88386e7i 0.871095i 0.900166 + 0.435548i \(0.143445\pi\)
−0.900166 + 0.435548i \(0.856555\pi\)
\(860\) −6.97437e6 −0.321557
\(861\) 2.18418e7 2.96270e7i 1.00411 1.36201i
\(862\) −7.78749e6 −0.356968
\(863\) 7.59157e6i 0.346980i 0.984836 + 0.173490i \(0.0555045\pi\)
−0.984836 + 0.173490i \(0.944496\pi\)
\(864\) −266520. + 266520.i −0.0121463 + 0.0121463i
\(865\) −4.24847e7 −1.93060
\(866\) 2.44581e7i 1.10822i
\(867\) −1.48217e7 1.48217e7i −0.669656 0.669656i
\(868\) −1.02998e7 + 1.02998e7i −0.464014 + 0.464014i
\(869\) 360326.i 0.0161863i
\(870\) 740837.i 0.0331837i
\(871\) −2.75829e7 −1.23195
\(872\) 8.11153e6 8.11153e6i 0.361253 0.361253i
\(873\) 5.70467e6 5.70467e6i 0.253335 0.253335i
\(874\) 1.83213e7 1.83213e7i 0.811294 0.811294i
\(875\) −1.80459e7 1.80459e7i −0.796819 0.796819i
\(876\) 9.49589e6 + 9.49589e6i 0.418096 + 0.418096i
\(877\) 1.08046e7 0.474360 0.237180 0.971466i \(-0.423777\pi\)
0.237180 + 0.971466i \(0.423777\pi\)
\(878\) 2.04936e7 + 2.04936e7i 0.897183 + 0.897183i
\(879\) −2.10378e7 −0.918394
\(880\) 207862. + 207862.i 0.00904833 + 0.00904833i
\(881\) 1.53139e7i 0.664731i −0.943151 0.332365i \(-0.892153\pi\)
0.943151 0.332365i \(-0.107847\pi\)
\(882\) 7.34666e6i 0.317994i
\(883\) −2.63579e7 2.63579e7i −1.13765 1.13765i −0.988870 0.148779i \(-0.952466\pi\)
−0.148779 0.988870i \(-0.547534\pi\)
\(884\) 8.30602e6 0.357489
\(885\) −589767. 589767.i −0.0253117 0.0253117i
\(886\) 2.26787e7 0.970583
\(887\) 2.03362e7 + 2.03362e7i 0.867881 + 0.867881i 0.992238 0.124356i \(-0.0396866\pi\)
−0.124356 + 0.992238i \(0.539687\pi\)
\(888\) −5.16260e6 5.16260e6i −0.219703 0.219703i
\(889\) 2.38370e7 2.38370e7i 1.01157 1.01157i
\(890\) −1.76095e7 + 1.76095e7i −0.745198 + 0.745198i
\(891\) 859527. 859527.i 0.0362715 0.0362715i
\(892\) −2.17198e7 −0.913995
\(893\) 6.30734e7i 2.64678i
\(894\) 3.00951e7i 1.25937i
\(895\) −1.49648e7 + 1.49648e7i −0.624473 + 0.624473i
\(896\) 1.82936e6 + 1.82936e6i 0.0761252 + 0.0761252i
\(897\) 4.86748e7i 2.01987i
\(898\) −2.53181e7 −1.04771
\(899\) −586857. + 586857.i −0.0242177 + 0.0242177i
\(900\) 1.46285e6i 0.0601994i
\(901\) 1.53370e7 0.629403
\(902\) −124457. 822808.i −0.00509335 0.0336730i
\(903\) 2.50904e7 1.02397
\(904\) 2.64975e6i 0.107841i
\(905\) −5.76331e6 + 5.76331e6i −0.233911 + 0.233911i
\(906\) −2.37964e7 −0.963143
\(907\) 4.25606e7i 1.71787i 0.512087 + 0.858934i \(0.328873\pi\)
−0.512087 + 0.858934i \(0.671127\pi\)
\(908\) −8.55160e6 8.55160e6i −0.344217 0.344217i
\(909\) −3.89162e6 + 3.89162e6i −0.156214 + 0.156214i
\(910\) 2.89756e7i 1.15992i
\(911\) 8.36014e6i 0.333747i 0.985978 + 0.166874i \(0.0533672\pi\)
−0.985978 + 0.166874i \(0.946633\pi\)
\(912\) 1.23380e7 0.491198
\(913\) −165750. + 165750.i −0.00658078 + 0.00658078i
\(914\) −2.52509e6 + 2.52509e6i −0.0999794 + 0.0999794i
\(915\) 3.99457e7 3.99457e7i 1.57731 1.57731i
\(916\) 5.84202e6 + 5.84202e6i 0.230051 + 0.230051i
\(917\) 2.43076e6 + 2.43076e6i 0.0954594 + 0.0954594i
\(918\) −989824. −0.0387660
\(919\) −9.36273e6 9.36273e6i −0.365690 0.365690i 0.500212 0.865903i \(-0.333255\pi\)
−0.865903 + 0.500212i \(0.833255\pi\)
\(920\) −1.10671e7 −0.431087
\(921\) −1.29065e7 1.29065e7i −0.501371 0.501371i
\(922\) 1.47648e7i 0.572006i
\(923\) 3.98222e7i 1.53858i
\(924\) −747787. 747787.i −0.0288136 0.0288136i
\(925\) −2.13097e6 −0.0818887
\(926\) 2.22486e7 + 2.22486e7i 0.852657 + 0.852657i
\(927\) −2.71437e7 −1.03746
\(928\) 104232. + 104232.i 0.00397311 + 0.00397311i
\(929\) 2.66622e7 + 2.66622e7i 1.01358 + 1.01358i 0.999907 + 0.0136686i \(0.00435099\pi\)
0.0136686 + 0.999907i \(0.495649\pi\)
\(930\) 2.09809e7 2.09809e7i 0.795457 0.795457i
\(931\) 1.27884e7 1.27884e7i 0.483550 0.483550i
\(932\) 6.94335e6 6.94335e6i 0.261836 0.261836i
\(933\) −4.64249e7 −1.74601
\(934\) 1.02750e7i 0.385402i
\(935\) 771975.i 0.0288785i
\(936\) 7.89769e6 7.89769e6i 0.294653 0.294653i
\(937\) −2.79936e6 2.79936e6i −0.104162 0.104162i 0.653105 0.757267i \(-0.273466\pi\)
−0.757267 + 0.653105i \(0.773466\pi\)
\(938\) 2.25618e7i 0.837270i
\(939\) −1.52683e7 −0.565102
\(940\) 1.90500e7 1.90500e7i 0.703193 0.703193i
\(941\) 1.72126e7i 0.633683i 0.948478 + 0.316842i \(0.102622\pi\)
−0.948478 + 0.316842i \(0.897378\pi\)
\(942\) 4.05124e7 1.48751
\(943\) 2.52175e7 + 1.85910e7i 0.923469 + 0.680807i
\(944\) −165954. −0.00606119
\(945\) 3.45301e6i 0.125782i
\(946\) 401108. 401108.i 0.0145725 0.0145725i
\(947\) 1.30939e7 0.474455 0.237228 0.971454i \(-0.423761\pi\)
0.237228 + 0.971454i \(0.423761\pi\)
\(948\) 6.45971e6i 0.233449i
\(949\) 2.11616e7 + 2.11616e7i 0.762750 + 0.762750i
\(950\) 2.54638e6 2.54638e6i 0.0915408 0.0915408i
\(951\) 6.27601e7i 2.25026i
\(952\) 6.79402e6i 0.242960i
\(953\) −5.34224e6 −0.190542 −0.0952712 0.995451i \(-0.530372\pi\)
−0.0952712 + 0.995451i \(0.530372\pi\)
\(954\) 1.45830e7 1.45830e7i 0.518773 0.518773i
\(955\) −2.72991e7 + 2.72991e7i −0.968589 + 0.968589i
\(956\) −1.39994e7 + 1.39994e7i −0.495408 + 0.495408i
\(957\) −42606.9 42606.9i −0.00150383 0.00150383i
\(958\) −2.46746e7 2.46746e7i −0.868632 0.868632i
\(959\) 2.46372e7 0.865059
\(960\) −3.72642e6 3.72642e6i −0.130501 0.130501i
\(961\) 4.61108e6 0.161063
\(962\) −1.15048e7 1.15048e7i −0.400813 0.400813i
\(963\) 3.17004e7i 1.10154i
\(964\) 1.31577e7i 0.456023i
\(965\) −1.11173e7 1.11173e7i −0.384308 0.384308i
\(966\) 3.98141e7 1.37276
\(967\) 1.29058e7 + 1.29058e7i 0.443831 + 0.443831i 0.893297 0.449466i \(-0.148386\pi\)
−0.449466 + 0.893297i \(0.648386\pi\)
\(968\) 1.02834e7 0.352733
\(969\) 2.29109e7 + 2.29109e7i 0.783850 + 0.783850i
\(970\) −5.99839e6 5.99839e6i −0.204694 0.204694i
\(971\) 1.18191e6 1.18191e6i 0.0402286 0.0402286i −0.686706 0.726935i \(-0.740944\pi\)
0.726935 + 0.686706i \(0.240944\pi\)
\(972\) −1.43971e7 + 1.43971e7i −0.488776 + 0.488776i
\(973\) 1.80718e7 1.80718e7i 0.611956 0.611956i
\(974\) 1.49018e7 0.503317
\(975\) 6.76505e6i 0.227908i
\(976\) 1.12403e7i 0.377706i
\(977\) −9.07592e6 + 9.07592e6i −0.304196 + 0.304196i −0.842653 0.538457i \(-0.819008\pi\)
0.538457 + 0.842653i \(0.319008\pi\)
\(978\) 2.49414e7 + 2.49414e7i 0.833823 + 0.833823i
\(979\) 2.02551e6i 0.0675425i
\(980\) −7.72491e6 −0.256938
\(981\) 2.86443e7 2.86443e7i 0.950311 0.950311i
\(982\) 4.51563e6i 0.149431i
\(983\) 1.38808e7 0.458175 0.229088 0.973406i \(-0.426426\pi\)
0.229088 + 0.973406i \(0.426426\pi\)
\(984\) 2.23119e6 + 1.47508e7i 0.0734597 + 0.485655i
\(985\) −5.04433e7 −1.65658
\(986\) 387105.i 0.0126805i
\(987\) −6.85325e7 + 6.85325e7i −2.23926 + 2.23926i
\(988\) 2.74951e7 0.896114
\(989\) 2.13561e7i 0.694274i
\(990\) 734025. + 734025.i 0.0238025 + 0.0238025i
\(991\) −2.70792e6 + 2.70792e6i −0.0875894 + 0.0875894i −0.749544 0.661955i \(-0.769727\pi\)
0.661955 + 0.749544i \(0.269727\pi\)
\(992\) 5.90380e6i 0.190482i
\(993\) 6.31550e7i 2.03252i
\(994\) 3.25731e7 1.04567
\(995\) 2.28805e7 2.28805e7i 0.732669 0.732669i
\(996\) 2.97147e6 2.97147e6i 0.0949124 0.0949124i
\(997\) 3.77834e7 3.77834e7i 1.20383 1.20383i 0.230832 0.972994i \(-0.425855\pi\)
0.972994 0.230832i \(-0.0741447\pi\)
\(998\) −2.54433e7 2.54433e7i −0.808624 0.808624i
\(999\) 1.37102e6 + 1.37102e6i 0.0434642 + 0.0434642i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 82.6.c.a.73.8 yes 16
41.9 even 4 inner 82.6.c.a.9.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
82.6.c.a.9.8 16 41.9 even 4 inner
82.6.c.a.73.8 yes 16 1.1 even 1 trivial