Properties

Label 804.2.y.b.49.4
Level 804
Weight 2
Character 804.49
Analytic conductor 6.420
Analytic rank 0
Dimension 120
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.y (of order \(33\), degree \(20\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.41997232251\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(6\) over \(\Q(\zeta_{33})\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{33}]$

Embedding invariants

Embedding label 49.4
Character \(\chi\) = 804.49
Dual form 804.2.y.b.361.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.841254 - 0.540641i) q^{3} +(-0.102535 - 0.713146i) q^{5} +(-0.326230 - 0.0311512i) q^{7} +(0.415415 + 0.909632i) q^{9} +O(q^{10})\) \(q+(-0.841254 - 0.540641i) q^{3} +(-0.102535 - 0.713146i) q^{5} +(-0.326230 - 0.0311512i) q^{7} +(0.415415 + 0.909632i) q^{9} +(4.09323 + 1.63868i) q^{11} +(-0.881004 - 0.840036i) q^{13} +(-0.299298 + 0.655371i) q^{15} +(-0.980712 + 2.83358i) q^{17} +(3.20978 - 0.306497i) q^{19} +(0.257600 + 0.202579i) q^{21} +(0.354214 - 7.43587i) q^{23} +(4.29940 - 1.26242i) q^{25} +(0.142315 - 0.989821i) q^{27} +(1.75788 - 3.04474i) q^{29} +(-2.44441 + 2.33074i) q^{31} +(-2.55750 - 3.59151i) q^{33} +(0.0112346 + 0.235843i) q^{35} +(-5.46054 - 9.45793i) q^{37} +(0.286990 + 1.18299i) q^{39} +(5.88757 - 1.13474i) q^{41} +(6.70231 + 7.73488i) q^{43} +(0.606106 - 0.389520i) q^{45} +(11.8033 - 6.08502i) q^{47} +(-6.76805 - 1.30443i) q^{49} +(2.35698 - 1.85355i) q^{51} +(8.32662 - 9.60943i) q^{53} +(0.748920 - 3.08709i) q^{55} +(-2.86594 - 1.47750i) q^{57} +(-1.66367 - 0.488497i) q^{59} +(-10.1583 + 4.06679i) q^{61} +(-0.107185 - 0.309690i) q^{63} +(-0.508734 + 0.714418i) q^{65} +(8.16762 - 0.538524i) q^{67} +(-4.31812 + 6.06395i) q^{69} +(3.65591 + 10.5631i) q^{71} +(-7.63635 + 3.05713i) q^{73} +(-4.29940 - 1.26242i) q^{75} +(-1.28429 - 0.662096i) q^{77} +(1.42762 - 5.88472i) q^{79} +(-0.654861 + 0.755750i) q^{81} +(8.92980 - 7.02247i) q^{83} +(2.12131 + 0.408850i) q^{85} +(-3.12493 + 1.61101i) q^{87} +(-4.70017 + 3.02062i) q^{89} +(0.261242 + 0.301489i) q^{91} +(3.31646 - 0.639194i) q^{93} +(-0.547691 - 2.25761i) q^{95} +(-4.06749 - 7.04510i) q^{97} +(0.209791 + 4.40406i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120q + 12q^{3} - 2q^{5} + q^{7} - 12q^{9} + O(q^{10}) \) \( 120q + 12q^{3} - 2q^{5} + q^{7} - 12q^{9} + 11q^{11} + 2q^{13} - 9q^{15} + 48q^{17} - 4q^{19} - q^{21} + 22q^{23} - 42q^{25} + 12q^{27} - q^{29} + 27q^{31} + 17q^{35} - 8q^{37} - 2q^{39} - 58q^{41} - 17q^{43} - 2q^{45} - 84q^{47} + 101q^{49} - 26q^{51} + 28q^{53} - 9q^{55} + 26q^{57} + 34q^{59} + 16q^{61} + 12q^{63} + 144q^{65} + 23q^{67} + 11q^{69} + 173q^{71} - 2q^{73} + 42q^{75} + 128q^{77} + 31q^{79} - 12q^{81} + 47q^{83} - 75q^{85} - 10q^{87} - 67q^{89} + 16q^{91} + 6q^{93} - 79q^{95} + 10q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/804\mathbb{Z}\right)^\times\).

\(n\) \(269\) \(337\) \(403\)
\(\chi(n)\) \(1\) \(e\left(\frac{23}{33}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.841254 0.540641i −0.485698 0.312139i
\(4\) 0 0
\(5\) −0.102535 0.713146i −0.0458550 0.318928i −0.999819 0.0190084i \(-0.993949\pi\)
0.953964 0.299920i \(-0.0969600\pi\)
\(6\) 0 0
\(7\) −0.326230 0.0311512i −0.123303 0.0117740i 0.0332219 0.999448i \(-0.489423\pi\)
−0.156525 + 0.987674i \(0.550029\pi\)
\(8\) 0 0
\(9\) 0.415415 + 0.909632i 0.138472 + 0.303211i
\(10\) 0 0
\(11\) 4.09323 + 1.63868i 1.23415 + 0.494081i 0.894753 0.446561i \(-0.147351\pi\)
0.339401 + 0.940642i \(0.389776\pi\)
\(12\) 0 0
\(13\) −0.881004 0.840036i −0.244347 0.232984i 0.558002 0.829840i \(-0.311568\pi\)
−0.802349 + 0.596855i \(0.796417\pi\)
\(14\) 0 0
\(15\) −0.299298 + 0.655371i −0.0772784 + 0.169216i
\(16\) 0 0
\(17\) −0.980712 + 2.83358i −0.237858 + 0.687244i 0.761384 + 0.648301i \(0.224520\pi\)
−0.999241 + 0.0389430i \(0.987601\pi\)
\(18\) 0 0
\(19\) 3.20978 0.306497i 0.736374 0.0703152i 0.279871 0.960037i \(-0.409708\pi\)
0.456502 + 0.889722i \(0.349102\pi\)
\(20\) 0 0
\(21\) 0.257600 + 0.202579i 0.0562130 + 0.0442064i
\(22\) 0 0
\(23\) 0.354214 7.43587i 0.0738588 1.55049i −0.592939 0.805247i \(-0.702032\pi\)
0.666798 0.745239i \(-0.267665\pi\)
\(24\) 0 0
\(25\) 4.29940 1.26242i 0.859880 0.252484i
\(26\) 0 0
\(27\) 0.142315 0.989821i 0.0273885 0.190491i
\(28\) 0 0
\(29\) 1.75788 3.04474i 0.326430 0.565393i −0.655371 0.755307i \(-0.727488\pi\)
0.981801 + 0.189914i \(0.0608209\pi\)
\(30\) 0 0
\(31\) −2.44441 + 2.33074i −0.439028 + 0.418613i −0.877085 0.480335i \(-0.840515\pi\)
0.438057 + 0.898947i \(0.355667\pi\)
\(32\) 0 0
\(33\) −2.55750 3.59151i −0.445204 0.625202i
\(34\) 0 0
\(35\) 0.0112346 + 0.235843i 0.00189900 + 0.0398648i
\(36\) 0 0
\(37\) −5.46054 9.45793i −0.897707 1.55487i −0.830418 0.557141i \(-0.811898\pi\)
−0.0672896 0.997733i \(-0.521435\pi\)
\(38\) 0 0
\(39\) 0.286990 + 1.18299i 0.0459552 + 0.189430i
\(40\) 0 0
\(41\) 5.88757 1.13474i 0.919483 0.177216i 0.292515 0.956261i \(-0.405508\pi\)
0.626968 + 0.779045i \(0.284296\pi\)
\(42\) 0 0
\(43\) 6.70231 + 7.73488i 1.02209 + 1.17956i 0.983612 + 0.180299i \(0.0577064\pi\)
0.0384810 + 0.999259i \(0.487748\pi\)
\(44\) 0 0
\(45\) 0.606106 0.389520i 0.0903529 0.0580663i
\(46\) 0 0
\(47\) 11.8033 6.08502i 1.72169 0.887592i 0.746754 0.665101i \(-0.231611\pi\)
0.974935 0.222491i \(-0.0714188\pi\)
\(48\) 0 0
\(49\) −6.76805 1.30443i −0.966864 0.186348i
\(50\) 0 0
\(51\) 2.35698 1.85355i 0.330043 0.259549i
\(52\) 0 0
\(53\) 8.32662 9.60943i 1.14375 1.31996i 0.203655 0.979043i \(-0.434718\pi\)
0.940094 0.340914i \(-0.110737\pi\)
\(54\) 0 0
\(55\) 0.748920 3.08709i 0.100984 0.416263i
\(56\) 0 0
\(57\) −2.86594 1.47750i −0.379603 0.195699i
\(58\) 0 0
\(59\) −1.66367 0.488497i −0.216591 0.0635970i 0.171637 0.985160i \(-0.445095\pi\)
−0.388228 + 0.921563i \(0.626913\pi\)
\(60\) 0 0
\(61\) −10.1583 + 4.06679i −1.30064 + 0.520699i −0.915559 0.402183i \(-0.868251\pi\)
−0.385083 + 0.922882i \(0.625827\pi\)
\(62\) 0 0
\(63\) −0.107185 0.309690i −0.0135040 0.0390172i
\(64\) 0 0
\(65\) −0.508734 + 0.714418i −0.0631007 + 0.0886126i
\(66\) 0 0
\(67\) 8.16762 0.538524i 0.997833 0.0657912i
\(68\) 0 0
\(69\) −4.31812 + 6.06395i −0.519840 + 0.730014i
\(70\) 0 0
\(71\) 3.65591 + 10.5631i 0.433876 + 1.25360i 0.924148 + 0.382034i \(0.124776\pi\)
−0.490272 + 0.871570i \(0.663103\pi\)
\(72\) 0 0
\(73\) −7.63635 + 3.05713i −0.893767 + 0.357810i −0.772653 0.634828i \(-0.781071\pi\)
−0.121114 + 0.992639i \(0.538647\pi\)
\(74\) 0 0
\(75\) −4.29940 1.26242i −0.496452 0.145771i
\(76\) 0 0
\(77\) −1.28429 0.662096i −0.146358 0.0754528i
\(78\) 0 0
\(79\) 1.42762 5.88472i 0.160619 0.662082i −0.833380 0.552700i \(-0.813598\pi\)
0.994000 0.109382i \(-0.0348873\pi\)
\(80\) 0 0
\(81\) −0.654861 + 0.755750i −0.0727623 + 0.0839722i
\(82\) 0 0
\(83\) 8.92980 7.02247i 0.980172 0.770816i 0.00678382 0.999977i \(-0.497841\pi\)
0.973389 + 0.229161i \(0.0735982\pi\)
\(84\) 0 0
\(85\) 2.12131 + 0.408850i 0.230089 + 0.0443460i
\(86\) 0 0
\(87\) −3.12493 + 1.61101i −0.335028 + 0.172719i
\(88\) 0 0
\(89\) −4.70017 + 3.02062i −0.498217 + 0.320185i −0.765503 0.643433i \(-0.777510\pi\)
0.267285 + 0.963617i \(0.413873\pi\)
\(90\) 0 0
\(91\) 0.261242 + 0.301489i 0.0273856 + 0.0316047i
\(92\) 0 0
\(93\) 3.31646 0.639194i 0.343900 0.0662814i
\(94\) 0 0
\(95\) −0.547691 2.25761i −0.0561919 0.231626i
\(96\) 0 0
\(97\) −4.06749 7.04510i −0.412991 0.715322i 0.582224 0.813028i \(-0.302183\pi\)
−0.995215 + 0.0977066i \(0.968849\pi\)
\(98\) 0 0
\(99\) 0.209791 + 4.40406i 0.0210848 + 0.442625i
\(100\) 0 0
\(101\) 9.03046 + 12.6815i 0.898564 + 1.26186i 0.964513 + 0.264034i \(0.0850531\pi\)
−0.0659492 + 0.997823i \(0.521008\pi\)
\(102\) 0 0
\(103\) 8.17439 7.79426i 0.805447 0.767992i −0.170649 0.985332i \(-0.554587\pi\)
0.976096 + 0.217340i \(0.0697381\pi\)
\(104\) 0 0
\(105\) 0.118055 0.204478i 0.0115210 0.0199550i
\(106\) 0 0
\(107\) −1.69109 + 11.7618i −0.163484 + 1.13705i 0.728520 + 0.685025i \(0.240209\pi\)
−0.892004 + 0.452028i \(0.850701\pi\)
\(108\) 0 0
\(109\) −2.76804 + 0.812771i −0.265130 + 0.0778493i −0.411596 0.911366i \(-0.635028\pi\)
0.146465 + 0.989216i \(0.453210\pi\)
\(110\) 0 0
\(111\) −0.519646 + 10.9087i −0.0493226 + 1.03541i
\(112\) 0 0
\(113\) 0.447901 + 0.352234i 0.0421350 + 0.0331353i 0.639004 0.769203i \(-0.279347\pi\)
−0.596869 + 0.802338i \(0.703589\pi\)
\(114\) 0 0
\(115\) −5.33918 + 0.509830i −0.497881 + 0.0475419i
\(116\) 0 0
\(117\) 0.398141 1.15035i 0.0368082 0.106350i
\(118\) 0 0
\(119\) 0.408207 0.893848i 0.0374203 0.0819390i
\(120\) 0 0
\(121\) 6.10817 + 5.82412i 0.555288 + 0.529466i
\(122\) 0 0
\(123\) −5.56642 2.22846i −0.501907 0.200933i
\(124\) 0 0
\(125\) −2.83762 6.21351i −0.253804 0.555753i
\(126\) 0 0
\(127\) −13.2333 1.26363i −1.17427 0.112129i −0.510372 0.859954i \(-0.670492\pi\)
−0.663897 + 0.747824i \(0.731098\pi\)
\(128\) 0 0
\(129\) −1.45655 10.1305i −0.128242 0.891944i
\(130\) 0 0
\(131\) −6.50313 4.17931i −0.568181 0.365148i 0.224790 0.974407i \(-0.427830\pi\)
−0.792971 + 0.609259i \(0.791467\pi\)
\(132\) 0 0
\(133\) −1.05667 −0.0916252
\(134\) 0 0
\(135\) −0.720479 −0.0620090
\(136\) 0 0
\(137\) −4.53851 2.91672i −0.387751 0.249192i 0.332212 0.943205i \(-0.392205\pi\)
−0.719963 + 0.694012i \(0.755841\pi\)
\(138\) 0 0
\(139\) 2.98636 + 20.7706i 0.253300 + 1.76174i 0.578107 + 0.815961i \(0.303792\pi\)
−0.324807 + 0.945780i \(0.605299\pi\)
\(140\) 0 0
\(141\) −13.2194 1.26230i −1.11327 0.106305i
\(142\) 0 0
\(143\) −2.22960 4.88214i −0.186449 0.408265i
\(144\) 0 0
\(145\) −2.35158 0.941433i −0.195288 0.0781817i
\(146\) 0 0
\(147\) 4.98841 + 4.75644i 0.411437 + 0.392305i
\(148\) 0 0
\(149\) −0.436746 + 0.956341i −0.0357796 + 0.0783465i −0.926678 0.375856i \(-0.877349\pi\)
0.890898 + 0.454203i \(0.150076\pi\)
\(150\) 0 0
\(151\) −1.85695 + 5.36530i −0.151116 + 0.436622i −0.994996 0.0999099i \(-0.968145\pi\)
0.843880 + 0.536532i \(0.180266\pi\)
\(152\) 0 0
\(153\) −2.98492 + 0.285025i −0.241316 + 0.0230429i
\(154\) 0 0
\(155\) 1.91279 + 1.50424i 0.153639 + 0.120823i
\(156\) 0 0
\(157\) −0.530665 + 11.1400i −0.0423517 + 0.889072i 0.873321 + 0.487146i \(0.161962\pi\)
−0.915672 + 0.401926i \(0.868341\pi\)
\(158\) 0 0
\(159\) −12.2001 + 3.58226i −0.967527 + 0.284092i
\(160\) 0 0
\(161\) −0.347191 + 2.41477i −0.0273625 + 0.190310i
\(162\) 0 0
\(163\) −8.61344 + 14.9189i −0.674656 + 1.16854i 0.301913 + 0.953336i \(0.402375\pi\)
−0.976569 + 0.215204i \(0.930958\pi\)
\(164\) 0 0
\(165\) −2.29904 + 2.19213i −0.178980 + 0.170657i
\(166\) 0 0
\(167\) 8.60075 + 12.0781i 0.665546 + 0.934629i 0.999970 0.00779409i \(-0.00248096\pi\)
−0.334423 + 0.942423i \(0.608542\pi\)
\(168\) 0 0
\(169\) −0.548057 11.5051i −0.0421582 0.885010i
\(170\) 0 0
\(171\) 1.61219 + 2.79239i 0.123287 + 0.213540i
\(172\) 0 0
\(173\) 4.95662 + 20.4314i 0.376844 + 1.55337i 0.772524 + 0.634985i \(0.218994\pi\)
−0.395680 + 0.918389i \(0.629491\pi\)
\(174\) 0 0
\(175\) −1.44192 + 0.277907i −0.108999 + 0.0210078i
\(176\) 0 0
\(177\) 1.13547 + 1.31040i 0.0853469 + 0.0984955i
\(178\) 0 0
\(179\) 15.8197 10.1667i 1.18242 0.759897i 0.206593 0.978427i \(-0.433762\pi\)
0.975830 + 0.218530i \(0.0701260\pi\)
\(180\) 0 0
\(181\) −17.8806 + 9.21808i −1.32905 + 0.685175i −0.968838 0.247695i \(-0.920327\pi\)
−0.360215 + 0.932869i \(0.617297\pi\)
\(182\) 0 0
\(183\) 10.7444 + 2.07082i 0.794250 + 0.153079i
\(184\) 0 0
\(185\) −6.18499 + 4.86393i −0.454729 + 0.357603i
\(186\) 0 0
\(187\) −8.65761 + 9.99142i −0.633107 + 0.730645i
\(188\) 0 0
\(189\) −0.0772614 + 0.318476i −0.00561994 + 0.0231657i
\(190\) 0 0
\(191\) −13.0624 6.73415i −0.945164 0.487266i −0.0844910 0.996424i \(-0.526926\pi\)
−0.860673 + 0.509158i \(0.829957\pi\)
\(192\) 0 0
\(193\) −14.1152 4.14459i −1.01603 0.298334i −0.269014 0.963136i \(-0.586698\pi\)
−0.747020 + 0.664802i \(0.768516\pi\)
\(194\) 0 0
\(195\) 0.814218 0.325964i 0.0583074 0.0233427i
\(196\) 0 0
\(197\) −0.697317 2.01477i −0.0496818 0.143546i 0.917430 0.397896i \(-0.130260\pi\)
−0.967112 + 0.254350i \(0.918138\pi\)
\(198\) 0 0
\(199\) 9.79353 13.7531i 0.694245 0.974930i −0.305497 0.952193i \(-0.598822\pi\)
0.999741 0.0227373i \(-0.00723813\pi\)
\(200\) 0 0
\(201\) −7.16219 3.96271i −0.505182 0.279508i
\(202\) 0 0
\(203\) −0.668320 + 0.938524i −0.0469069 + 0.0658715i
\(204\) 0 0
\(205\) −1.41291 4.08234i −0.0986821 0.285123i
\(206\) 0 0
\(207\) 6.91105 2.76677i 0.480351 0.192304i
\(208\) 0 0
\(209\) 13.6406 + 4.00524i 0.943540 + 0.277048i
\(210\) 0 0
\(211\) −4.18975 2.15997i −0.288434 0.148698i 0.307937 0.951407i \(-0.400361\pi\)
−0.596372 + 0.802708i \(0.703392\pi\)
\(212\) 0 0
\(213\) 2.63527 10.8627i 0.180566 0.744303i
\(214\) 0 0
\(215\) 4.82888 5.57282i 0.329327 0.380063i
\(216\) 0 0
\(217\) 0.870043 0.684210i 0.0590624 0.0464472i
\(218\) 0 0
\(219\) 8.07692 + 1.55670i 0.545787 + 0.105192i
\(220\) 0 0
\(221\) 3.24432 1.67256i 0.218237 0.112509i
\(222\) 0 0
\(223\) 5.91305 3.80009i 0.395967 0.254473i −0.327472 0.944861i \(-0.606197\pi\)
0.723439 + 0.690388i \(0.242560\pi\)
\(224\) 0 0
\(225\) 2.93437 + 3.38645i 0.195625 + 0.225763i
\(226\) 0 0
\(227\) −20.5706 + 3.96467i −1.36532 + 0.263144i −0.818693 0.574231i \(-0.805301\pi\)
−0.546628 + 0.837375i \(0.684089\pi\)
\(228\) 0 0
\(229\) 4.47979 + 18.4660i 0.296033 + 1.22026i 0.904427 + 0.426629i \(0.140299\pi\)
−0.608394 + 0.793635i \(0.708186\pi\)
\(230\) 0 0
\(231\) 0.722454 + 1.25133i 0.0475340 + 0.0823313i
\(232\) 0 0
\(233\) −0.508972 10.6846i −0.0333439 0.699974i −0.952217 0.305422i \(-0.901203\pi\)
0.918873 0.394553i \(-0.129100\pi\)
\(234\) 0 0
\(235\) −5.54976 7.79355i −0.362026 0.508395i
\(236\) 0 0
\(237\) −4.38251 + 4.17871i −0.284674 + 0.271436i
\(238\) 0 0
\(239\) −2.49419 + 4.32006i −0.161335 + 0.279441i −0.935348 0.353729i \(-0.884913\pi\)
0.774012 + 0.633170i \(0.218247\pi\)
\(240\) 0 0
\(241\) −1.29812 + 9.02859i −0.0836189 + 0.581583i 0.904334 + 0.426826i \(0.140368\pi\)
−0.987953 + 0.154756i \(0.950541\pi\)
\(242\) 0 0
\(243\) 0.959493 0.281733i 0.0615515 0.0180732i
\(244\) 0 0
\(245\) −0.236291 + 4.96035i −0.0150961 + 0.316905i
\(246\) 0 0
\(247\) −3.08530 2.42630i −0.196313 0.154382i
\(248\) 0 0
\(249\) −11.3089 + 1.07986i −0.716670 + 0.0684336i
\(250\) 0 0
\(251\) −0.0240368 + 0.0694498i −0.00151719 + 0.00438364i −0.945757 0.324875i \(-0.894678\pi\)
0.944240 + 0.329259i \(0.106799\pi\)
\(252\) 0 0
\(253\) 13.6349 29.8563i 0.857219 1.87705i
\(254\) 0 0
\(255\) −1.56352 1.49081i −0.0979115 0.0933584i
\(256\) 0 0
\(257\) −7.98959 3.19855i −0.498377 0.199520i 0.108835 0.994060i \(-0.465288\pi\)
−0.607212 + 0.794540i \(0.707712\pi\)
\(258\) 0 0
\(259\) 1.48677 + 3.25556i 0.0923831 + 0.202291i
\(260\) 0 0
\(261\) 3.49984 + 0.334194i 0.216635 + 0.0206861i
\(262\) 0 0
\(263\) −1.80131 12.5284i −0.111074 0.772533i −0.966879 0.255235i \(-0.917847\pi\)
0.855805 0.517298i \(-0.173062\pi\)
\(264\) 0 0
\(265\) −7.70669 4.95279i −0.473418 0.304248i
\(266\) 0 0
\(267\) 5.58711 0.341925
\(268\) 0 0
\(269\) 9.23820 0.563263 0.281632 0.959523i \(-0.409124\pi\)
0.281632 + 0.959523i \(0.409124\pi\)
\(270\) 0 0
\(271\) 15.0226 + 9.65444i 0.912558 + 0.586466i 0.910489 0.413532i \(-0.135705\pi\)
0.00206876 + 0.999998i \(0.499341\pi\)
\(272\) 0 0
\(273\) −0.0567733 0.394867i −0.00343608 0.0238984i
\(274\) 0 0
\(275\) 19.6671 + 1.87798i 1.18597 + 0.113247i
\(276\) 0 0
\(277\) 4.11164 + 9.00323i 0.247044 + 0.540952i 0.992011 0.126150i \(-0.0402620\pi\)
−0.744967 + 0.667101i \(0.767535\pi\)
\(278\) 0 0
\(279\) −3.13555 1.25529i −0.187721 0.0751521i
\(280\) 0 0
\(281\) −13.0235 12.4179i −0.776916 0.740788i 0.193794 0.981042i \(-0.437921\pi\)
−0.970710 + 0.240254i \(0.922769\pi\)
\(282\) 0 0
\(283\) −13.3427 + 29.2165i −0.793143 + 1.73674i −0.125716 + 0.992066i \(0.540123\pi\)
−0.667427 + 0.744675i \(0.732604\pi\)
\(284\) 0 0
\(285\) −0.759811 + 2.19533i −0.0450073 + 0.130040i
\(286\) 0 0
\(287\) −1.95605 + 0.186780i −0.115462 + 0.0110253i
\(288\) 0 0
\(289\) 6.29552 + 4.95085i 0.370324 + 0.291226i
\(290\) 0 0
\(291\) −0.387078 + 8.12577i −0.0226909 + 0.476341i
\(292\) 0 0
\(293\) −14.9318 + 4.38436i −0.872323 + 0.256137i −0.687103 0.726560i \(-0.741118\pi\)
−0.185220 + 0.982697i \(0.559300\pi\)
\(294\) 0 0
\(295\) −0.177786 + 1.23653i −0.0103511 + 0.0719934i
\(296\) 0 0
\(297\) 2.20453 3.81836i 0.127920 0.221564i
\(298\) 0 0
\(299\) −6.55846 + 6.25348i −0.379286 + 0.361648i
\(300\) 0 0
\(301\) −1.94554 2.73213i −0.112139 0.157478i
\(302\) 0 0
\(303\) −0.740766 15.5506i −0.0425559 0.893358i
\(304\) 0 0
\(305\) 3.94180 + 6.82739i 0.225707 + 0.390935i
\(306\) 0 0
\(307\) −2.20538 9.09068i −0.125867 0.518833i −0.999481 0.0322124i \(-0.989745\pi\)
0.873614 0.486620i \(-0.161770\pi\)
\(308\) 0 0
\(309\) −11.0906 + 2.13754i −0.630924 + 0.121601i
\(310\) 0 0
\(311\) −4.70566 5.43062i −0.266834 0.307942i 0.606482 0.795097i \(-0.292580\pi\)
−0.873316 + 0.487155i \(0.838035\pi\)
\(312\) 0 0
\(313\) 24.3218 15.6307i 1.37475 0.883497i 0.375684 0.926748i \(-0.377408\pi\)
0.999064 + 0.0432511i \(0.0137715\pi\)
\(314\) 0 0
\(315\) −0.209864 + 0.108192i −0.0118245 + 0.00609595i
\(316\) 0 0
\(317\) 21.2653 + 4.09855i 1.19438 + 0.230198i 0.747417 0.664355i \(-0.231294\pi\)
0.446962 + 0.894553i \(0.352506\pi\)
\(318\) 0 0
\(319\) 12.1848 9.58220i 0.682215 0.536500i
\(320\) 0 0
\(321\) 7.78152 8.98036i 0.434322 0.501235i
\(322\) 0 0
\(323\) −2.27938 + 9.39575i −0.126828 + 0.522794i
\(324\) 0 0
\(325\) −4.84827 2.49946i −0.268934 0.138645i
\(326\) 0 0
\(327\) 2.76804 + 0.812771i 0.153073 + 0.0449463i
\(328\) 0 0
\(329\) −4.04014 + 1.61743i −0.222740 + 0.0891718i
\(330\) 0 0
\(331\) 0.123791 + 0.357670i 0.00680416 + 0.0196593i 0.948352 0.317221i \(-0.102750\pi\)
−0.941548 + 0.336880i \(0.890628\pi\)
\(332\) 0 0
\(333\) 6.33485 8.89605i 0.347148 0.487501i
\(334\) 0 0
\(335\) −1.22151 5.76948i −0.0667383 0.315221i
\(336\) 0 0
\(337\) 16.6813 23.4255i 0.908686 1.27607i −0.0520609 0.998644i \(-0.516579\pi\)
0.960747 0.277427i \(-0.0894816\pi\)
\(338\) 0 0
\(339\) −0.186367 0.538471i −0.0101221 0.0292458i
\(340\) 0 0
\(341\) −13.8248 + 5.53463i −0.748657 + 0.299717i
\(342\) 0 0
\(343\) 4.36838 + 1.28267i 0.235870 + 0.0692577i
\(344\) 0 0
\(345\) 4.76724 + 2.45768i 0.256659 + 0.132317i
\(346\) 0 0
\(347\) 2.87474 11.8498i 0.154324 0.636132i −0.841125 0.540840i \(-0.818106\pi\)
0.995449 0.0952917i \(-0.0303784\pi\)
\(348\) 0 0
\(349\) 3.97303 4.58512i 0.212672 0.245436i −0.639384 0.768888i \(-0.720810\pi\)
0.852055 + 0.523452i \(0.175356\pi\)
\(350\) 0 0
\(351\) −0.956866 + 0.752488i −0.0510737 + 0.0401648i
\(352\) 0 0
\(353\) −11.6555 2.24641i −0.620359 0.119564i −0.130618 0.991433i \(-0.541696\pi\)
−0.489740 + 0.871868i \(0.662908\pi\)
\(354\) 0 0
\(355\) 7.15814 3.69028i 0.379914 0.195860i
\(356\) 0 0
\(357\) −0.826656 + 0.531260i −0.0437513 + 0.0281173i
\(358\) 0 0
\(359\) −6.74346 7.78237i −0.355906 0.410738i 0.549358 0.835587i \(-0.314872\pi\)
−0.905264 + 0.424850i \(0.860327\pi\)
\(360\) 0 0
\(361\) −8.44791 + 1.62820i −0.444627 + 0.0856948i
\(362\) 0 0
\(363\) −1.98976 8.20189i −0.104435 0.430487i
\(364\) 0 0
\(365\) 2.96317 + 5.13237i 0.155100 + 0.268640i
\(366\) 0 0
\(367\) 1.26681 + 26.5936i 0.0661270 + 1.38818i 0.751379 + 0.659870i \(0.229389\pi\)
−0.685253 + 0.728306i \(0.740308\pi\)
\(368\) 0 0
\(369\) 3.47797 + 4.88413i 0.181056 + 0.254258i
\(370\) 0 0
\(371\) −3.01574 + 2.87550i −0.156569 + 0.149288i
\(372\) 0 0
\(373\) 6.46594 11.1993i 0.334794 0.579879i −0.648652 0.761085i \(-0.724667\pi\)
0.983445 + 0.181206i \(0.0580001\pi\)
\(374\) 0 0
\(375\) −0.972124 + 6.76127i −0.0502003 + 0.349150i
\(376\) 0 0
\(377\) −4.10639 + 1.20574i −0.211490 + 0.0620990i
\(378\) 0 0
\(379\) 1.30520 27.3994i 0.0670434 1.40742i −0.675373 0.737476i \(-0.736017\pi\)
0.742416 0.669939i \(-0.233680\pi\)
\(380\) 0 0
\(381\) 10.4494 + 8.21752i 0.535340 + 0.420996i
\(382\) 0 0
\(383\) 5.12063 0.488961i 0.261652 0.0249847i 0.0365944 0.999330i \(-0.488349\pi\)
0.225058 + 0.974345i \(0.427743\pi\)
\(384\) 0 0
\(385\) −0.340487 + 0.983771i −0.0173528 + 0.0501376i
\(386\) 0 0
\(387\) −4.25165 + 9.30982i −0.216124 + 0.473245i
\(388\) 0 0
\(389\) −4.17526 3.98111i −0.211694 0.201850i 0.576812 0.816877i \(-0.304297\pi\)
−0.788506 + 0.615027i \(0.789145\pi\)
\(390\) 0 0
\(391\) 20.7228 + 8.29614i 1.04800 + 0.419554i
\(392\) 0 0
\(393\) 3.21128 + 7.03171i 0.161987 + 0.354703i
\(394\) 0 0
\(395\) −4.34304 0.414710i −0.218522 0.0208663i
\(396\) 0 0
\(397\) −0.517530 3.59950i −0.0259741 0.180654i 0.972704 0.232048i \(-0.0745426\pi\)
−0.998678 + 0.0513941i \(0.983634\pi\)
\(398\) 0 0
\(399\) 0.888930 + 0.571281i 0.0445022 + 0.0285998i
\(400\) 0 0
\(401\) 36.3052 1.81300 0.906498 0.422210i \(-0.138745\pi\)
0.906498 + 0.422210i \(0.138745\pi\)
\(402\) 0 0
\(403\) 4.11143 0.204805
\(404\) 0 0
\(405\) 0.606106 + 0.389520i 0.0301176 + 0.0193554i
\(406\) 0 0
\(407\) −6.85270 47.6616i −0.339676 2.36250i
\(408\) 0 0
\(409\) 3.36626 + 0.321438i 0.166451 + 0.0158941i 0.177949 0.984040i \(-0.443054\pi\)
−0.0114979 + 0.999934i \(0.503660\pi\)
\(410\) 0 0
\(411\) 2.24114 + 4.90740i 0.110547 + 0.242064i
\(412\) 0 0
\(413\) 0.527521 + 0.211188i 0.0259576 + 0.0103919i
\(414\) 0 0
\(415\) −5.92366 5.64820i −0.290781 0.277259i
\(416\) 0 0
\(417\) 8.71716 19.0879i 0.426881 0.934739i
\(418\) 0 0
\(419\) −5.33102 + 15.4030i −0.260437 + 0.752484i 0.736654 + 0.676270i \(0.236405\pi\)
−0.997091 + 0.0762147i \(0.975717\pi\)
\(420\) 0 0
\(421\) −20.3523 + 1.94340i −0.991908 + 0.0947157i −0.578373 0.815772i \(-0.696312\pi\)
−0.413535 + 0.910488i \(0.635706\pi\)
\(422\) 0 0
\(423\) 10.4384 + 8.20885i 0.507532 + 0.399128i
\(424\) 0 0
\(425\) −0.639310 + 13.4208i −0.0310111 + 0.651003i
\(426\) 0 0
\(427\) 3.44064 1.01026i 0.166504 0.0488900i
\(428\) 0 0
\(429\) −0.763827 + 5.31253i −0.0368779 + 0.256492i
\(430\) 0 0
\(431\) −9.92354 + 17.1881i −0.478000 + 0.827920i −0.999682 0.0252199i \(-0.991971\pi\)
0.521682 + 0.853140i \(0.325305\pi\)
\(432\) 0 0
\(433\) 7.06311 6.73466i 0.339431 0.323647i −0.501121 0.865377i \(-0.667079\pi\)
0.840553 + 0.541730i \(0.182230\pi\)
\(434\) 0 0
\(435\) 1.46930 + 2.06335i 0.0704477 + 0.0989299i
\(436\) 0 0
\(437\) −1.14212 23.9761i −0.0546350 1.14693i
\(438\) 0 0
\(439\) −14.3951 24.9331i −0.687041 1.18999i −0.972791 0.231686i \(-0.925576\pi\)
0.285749 0.958304i \(-0.407758\pi\)
\(440\) 0 0
\(441\) −1.62499 6.69831i −0.0773806 0.318967i
\(442\) 0 0
\(443\) −13.9515 + 2.68894i −0.662857 + 0.127755i −0.509574 0.860427i \(-0.670197\pi\)
−0.153283 + 0.988182i \(0.548985\pi\)
\(444\) 0 0
\(445\) 2.63607 + 3.04219i 0.124962 + 0.144214i
\(446\) 0 0
\(447\) 0.884451 0.568402i 0.0418331 0.0268845i
\(448\) 0 0
\(449\) −3.75622 + 1.93646i −0.177267 + 0.0913874i −0.544576 0.838712i \(-0.683309\pi\)
0.367309 + 0.930099i \(0.380279\pi\)
\(450\) 0 0
\(451\) 25.9586 + 5.00311i 1.22234 + 0.235587i
\(452\) 0 0
\(453\) 4.46286 3.50963i 0.209684 0.164897i
\(454\) 0 0
\(455\) 0.188219 0.217217i 0.00882386 0.0101833i
\(456\) 0 0
\(457\) −2.55181 + 10.5187i −0.119368 + 0.492043i 0.880471 + 0.474101i \(0.157227\pi\)
−0.999839 + 0.0179426i \(0.994288\pi\)
\(458\) 0 0
\(459\) 2.66517 + 1.37399i 0.124399 + 0.0641324i
\(460\) 0 0
\(461\) 22.2974 + 6.54711i 1.03849 + 0.304929i 0.756160 0.654387i \(-0.227073\pi\)
0.282334 + 0.959316i \(0.408891\pi\)
\(462\) 0 0
\(463\) 4.26021 1.70553i 0.197989 0.0792628i −0.270549 0.962706i \(-0.587205\pi\)
0.468538 + 0.883443i \(0.344781\pi\)
\(464\) 0 0
\(465\) −0.795891 2.29958i −0.0369086 0.106640i
\(466\) 0 0
\(467\) −0.810893 + 1.13874i −0.0375237 + 0.0526946i −0.832912 0.553406i \(-0.813328\pi\)
0.795388 + 0.606101i \(0.207267\pi\)
\(468\) 0 0
\(469\) −2.68130 0.0787483i −0.123811 0.00363626i
\(470\) 0 0
\(471\) 6.46918 9.08470i 0.298084 0.418601i
\(472\) 0 0
\(473\) 14.7591 + 42.6436i 0.678623 + 1.96075i
\(474\) 0 0
\(475\) 13.4132 5.36983i 0.615440 0.246385i
\(476\) 0 0
\(477\) 12.2001 + 3.58226i 0.558602 + 0.164020i
\(478\) 0 0
\(479\) −0.432889 0.223170i −0.0197792 0.0101969i 0.448309 0.893879i \(-0.352027\pi\)
−0.468088 + 0.883682i \(0.655057\pi\)
\(480\) 0 0
\(481\) −3.13424 + 12.9195i −0.142909 + 0.589080i
\(482\) 0 0
\(483\) 1.59760 1.84373i 0.0726932 0.0838925i
\(484\) 0 0
\(485\) −4.60713 + 3.62308i −0.209199 + 0.164516i
\(486\) 0 0
\(487\) −34.8452 6.71586i −1.57899 0.304325i −0.676965 0.736015i \(-0.736705\pi\)
−0.902022 + 0.431690i \(0.857917\pi\)
\(488\) 0 0
\(489\) 15.3119 7.89381i 0.692426 0.356970i
\(490\) 0 0
\(491\) −9.57543 + 6.15376i −0.432133 + 0.277715i −0.738571 0.674175i \(-0.764499\pi\)
0.306438 + 0.951891i \(0.400863\pi\)
\(492\) 0 0
\(493\) 6.90354 + 7.96710i 0.310920 + 0.358820i
\(494\) 0 0
\(495\) 3.11923 0.601182i 0.140199 0.0270211i
\(496\) 0 0
\(497\) −0.863615 3.55987i −0.0387384 0.159682i
\(498\) 0 0
\(499\) 6.59221 + 11.4180i 0.295108 + 0.511142i 0.975010 0.222161i \(-0.0713111\pi\)
−0.679902 + 0.733303i \(0.737978\pi\)
\(500\) 0 0
\(501\) −0.705517 14.8106i −0.0315202 0.661690i
\(502\) 0 0
\(503\) −22.3679 31.4113i −0.997336 1.40056i −0.914769 0.403977i \(-0.867628\pi\)
−0.0825670 0.996586i \(-0.526312\pi\)
\(504\) 0 0
\(505\) 8.11782 7.74033i 0.361238 0.344440i
\(506\) 0 0
\(507\) −5.75909 + 9.97503i −0.255770 + 0.443007i
\(508\) 0 0
\(509\) −0.140873 + 0.979793i −0.00624409 + 0.0434286i −0.992705 0.120566i \(-0.961529\pi\)
0.986461 + 0.163995i \(0.0524381\pi\)
\(510\) 0 0
\(511\) 2.58644 0.759447i 0.114417 0.0335959i
\(512\) 0 0
\(513\) 0.153422 3.22073i 0.00677375 0.142199i
\(514\) 0 0
\(515\) −6.39661 5.03035i −0.281868 0.221664i
\(516\) 0 0
\(517\) 58.2850 5.56554i 2.56337 0.244772i
\(518\) 0 0
\(519\) 6.87630 19.8678i 0.301836 0.872099i
\(520\) 0 0
\(521\) −11.6293 + 25.4647i −0.509490 + 1.11563i 0.463778 + 0.885952i \(0.346494\pi\)
−0.973267 + 0.229675i \(0.926234\pi\)
\(522\) 0 0
\(523\) −10.7369 10.2376i −0.469492 0.447660i 0.418024 0.908436i \(-0.362723\pi\)
−0.887516 + 0.460776i \(0.847571\pi\)
\(524\) 0 0
\(525\) 1.36327 + 0.545770i 0.0594979 + 0.0238194i
\(526\) 0 0
\(527\) −4.20707 9.21220i −0.183263 0.401290i
\(528\) 0 0
\(529\) −32.2709 3.08149i −1.40308 0.133978i
\(530\) 0 0
\(531\) −0.246760 1.71626i −0.0107085 0.0744792i
\(532\) 0 0
\(533\) −6.14019 3.94606i −0.265961 0.170923i
\(534\) 0 0
\(535\) 8.56125 0.370135
\(536\) 0 0
\(537\) −18.8050 −0.811494
\(538\) 0 0
\(539\) −25.5656 16.4300i −1.10119 0.707691i
\(540\) 0 0
\(541\) −2.55693 17.7839i −0.109931 0.764588i −0.967981 0.251022i \(-0.919233\pi\)
0.858050 0.513566i \(-0.171676\pi\)
\(542\) 0 0
\(543\) 20.0258 + 1.91223i 0.859388 + 0.0820616i
\(544\) 0 0
\(545\) 0.863445 + 1.89068i 0.0369859 + 0.0809879i
\(546\) 0 0
\(547\) 23.7616 + 9.51269i 1.01597 + 0.406733i 0.819072 0.573691i \(-0.194489\pi\)
0.196899 + 0.980424i \(0.436913\pi\)
\(548\) 0 0
\(549\) −7.91921 7.55095i −0.337983 0.322267i
\(550\) 0 0
\(551\) 4.70920 10.3117i 0.200619 0.439294i
\(552\) 0 0
\(553\) −0.649047 + 1.87530i −0.0276003 + 0.0797458i
\(554\) 0 0
\(555\) 7.83278 0.747940i 0.332483 0.0317483i
\(556\) 0 0
\(557\) 9.59997 + 7.54950i 0.406764 + 0.319883i 0.800491 0.599345i \(-0.204572\pi\)
−0.393727 + 0.919227i \(0.628815\pi\)
\(558\) 0 0
\(559\) 0.592812 12.4446i 0.0250733 0.526352i
\(560\) 0 0
\(561\) 12.6850 3.72466i 0.535562 0.157255i
\(562\) 0 0
\(563\) 1.91712 13.3339i 0.0807971 0.561956i −0.908705 0.417439i \(-0.862928\pi\)
0.989502 0.144518i \(-0.0461630\pi\)
\(564\) 0 0
\(565\) 0.205268 0.355535i 0.00863570 0.0149575i
\(566\) 0 0
\(567\) 0.237178 0.226148i 0.00996052 0.00949734i
\(568\) 0 0
\(569\) −11.9236 16.7444i −0.499865 0.701961i 0.485150 0.874431i \(-0.338765\pi\)
−0.985015 + 0.172469i \(0.944825\pi\)
\(570\) 0 0
\(571\) 2.22592 + 46.7279i 0.0931519 + 1.95550i 0.250883 + 0.968018i \(0.419279\pi\)
−0.157731 + 0.987482i \(0.550418\pi\)
\(572\) 0 0
\(573\) 7.34806 + 12.7272i 0.306969 + 0.531687i
\(574\) 0 0
\(575\) −7.86427 32.4170i −0.327963 1.35188i
\(576\) 0 0
\(577\) −21.4079 + 4.12603i −0.891222 + 0.171769i −0.614252 0.789110i \(-0.710542\pi\)
−0.276970 + 0.960879i \(0.589330\pi\)
\(578\) 0 0
\(579\) 9.63372 + 11.1179i 0.400364 + 0.462044i
\(580\) 0 0
\(581\) −3.13192 + 2.01277i −0.129934 + 0.0835036i
\(582\) 0 0
\(583\) 49.8296 25.6889i 2.06373 1.06393i
\(584\) 0 0
\(585\) −0.861193 0.165981i −0.0356059 0.00686248i
\(586\) 0 0
\(587\) −14.9760 + 11.7773i −0.618126 + 0.486100i −0.877435 0.479695i \(-0.840747\pi\)
0.259310 + 0.965794i \(0.416505\pi\)
\(588\) 0 0
\(589\) −7.13164 + 8.23035i −0.293854 + 0.339126i
\(590\) 0 0
\(591\) −0.502644 + 2.07193i −0.0206760 + 0.0852277i
\(592\) 0 0
\(593\) 5.43848 + 2.80373i 0.223332 + 0.115135i 0.566262 0.824225i \(-0.308389\pi\)
−0.342930 + 0.939361i \(0.611419\pi\)
\(594\) 0 0
\(595\) −0.679300 0.199460i −0.0278486 0.00817708i
\(596\) 0 0
\(597\) −15.6743 + 6.27505i −0.641507 + 0.256821i
\(598\) 0 0
\(599\) −1.13253 3.27224i −0.0462741 0.133700i 0.919496 0.393099i \(-0.128597\pi\)
−0.965770 + 0.259398i \(0.916476\pi\)
\(600\) 0 0
\(601\) 18.6343 26.1683i 0.760111 1.06743i −0.235318 0.971919i \(-0.575613\pi\)
0.995429 0.0955080i \(-0.0304476\pi\)
\(602\) 0 0
\(603\) 3.88281 + 7.20582i 0.158120 + 0.293444i
\(604\) 0 0
\(605\) 3.52715 4.95319i 0.143399 0.201376i
\(606\) 0 0
\(607\) 7.75463 + 22.4055i 0.314751 + 0.909413i 0.985789 + 0.167990i \(0.0537276\pi\)
−0.671038 + 0.741423i \(0.734151\pi\)
\(608\) 0 0
\(609\) 1.06963 0.428216i 0.0433436 0.0173522i
\(610\) 0 0
\(611\) −15.5104 4.55426i −0.627484 0.184246i
\(612\) 0 0
\(613\) −36.4903 18.8120i −1.47383 0.759811i −0.480704 0.876883i \(-0.659619\pi\)
−0.993123 + 0.117072i \(0.962649\pi\)
\(614\) 0 0
\(615\) −1.01846 + 4.19816i −0.0410684 + 0.169286i
\(616\) 0 0
\(617\) −32.3021 + 37.2787i −1.30044 + 1.50078i −0.560383 + 0.828234i \(0.689346\pi\)
−0.740052 + 0.672549i \(0.765199\pi\)
\(618\) 0 0
\(619\) −18.5309 + 14.5728i −0.744818 + 0.585731i −0.916790 0.399370i \(-0.869229\pi\)
0.171972 + 0.985102i \(0.444986\pi\)
\(620\) 0 0
\(621\) −7.30977 1.40884i −0.293331 0.0565349i
\(622\) 0 0
\(623\) 1.62743 0.839000i 0.0652017 0.0336138i
\(624\) 0 0
\(625\) 14.7077 9.45208i 0.588309 0.378083i
\(626\) 0 0
\(627\) −9.30981 10.7441i −0.371798 0.429078i
\(628\) 0 0
\(629\) 32.1550 6.19738i 1.28211 0.247106i
\(630\) 0 0
\(631\) −1.14959 4.73867i −0.0457644 0.188644i 0.944341 0.328968i \(-0.106701\pi\)
−0.990106 + 0.140324i \(0.955186\pi\)
\(632\) 0 0
\(633\) 2.35688 + 4.08223i 0.0936774 + 0.162254i
\(634\) 0 0
\(635\) 0.455726 + 9.56687i 0.0180849 + 0.379649i
\(636\) 0 0
\(637\) 4.86691 + 6.83461i 0.192834 + 0.270797i
\(638\) 0 0
\(639\) −8.08977 + 7.71358i −0.320026 + 0.305145i
\(640\) 0 0
\(641\) −19.6087 + 33.9633i −0.774497 + 1.34147i 0.160579 + 0.987023i \(0.448664\pi\)
−0.935077 + 0.354446i \(0.884670\pi\)
\(642\) 0 0
\(643\) 1.73435 12.0626i 0.0683959 0.475704i −0.926621 0.375997i \(-0.877300\pi\)
0.995017 0.0997070i \(-0.0317906\pi\)
\(644\) 0 0
\(645\) −7.07520 + 2.07747i −0.278586 + 0.0818002i
\(646\) 0 0
\(647\) −2.23817 + 46.9849i −0.0879914 + 1.84717i 0.336438 + 0.941706i \(0.390778\pi\)
−0.424430 + 0.905461i \(0.639525\pi\)
\(648\) 0 0
\(649\) −6.00929 4.72576i −0.235885 0.185502i
\(650\) 0 0
\(651\) −1.10184 + 0.105213i −0.0431845 + 0.00412362i
\(652\) 0 0
\(653\) 4.94030 14.2741i 0.193329 0.558587i −0.806121 0.591750i \(-0.798437\pi\)
0.999450 + 0.0331637i \(0.0105583\pi\)
\(654\) 0 0
\(655\) −2.31366 + 5.06620i −0.0904021 + 0.197953i
\(656\) 0 0
\(657\) −5.95312 5.67629i −0.232253 0.221453i
\(658\) 0 0
\(659\) 38.9959 + 15.6116i 1.51906 + 0.608141i 0.973246 0.229764i \(-0.0737953\pi\)
0.545816 + 0.837905i \(0.316220\pi\)
\(660\) 0 0
\(661\) 0.585684 + 1.28247i 0.0227804 + 0.0498822i 0.920680 0.390318i \(-0.127635\pi\)
−0.897900 + 0.440200i \(0.854908\pi\)
\(662\) 0 0
\(663\) −3.63355 0.346962i −0.141116 0.0134749i
\(664\) 0 0
\(665\) 0.108346 + 0.753562i 0.00420147 + 0.0292219i
\(666\) 0 0
\(667\) −22.0176 14.1499i −0.852525 0.547885i
\(668\) 0 0
\(669\) −7.02886 −0.271751
\(670\) 0 0
\(671\) −48.2446 −1.86246
\(672\) 0 0
\(673\) 36.5880 + 23.5137i 1.41036 + 0.906386i 0.999985 0.00552956i \(-0.00176012\pi\)
0.410379 + 0.911915i \(0.365396\pi\)
\(674\) 0 0
\(675\) −0.637700 4.43530i −0.0245451 0.170715i
\(676\) 0 0
\(677\) −47.9745 4.58101i −1.84381 0.176063i −0.886043 0.463604i \(-0.846556\pi\)
−0.957768 + 0.287541i \(0.907162\pi\)
\(678\) 0 0
\(679\) 1.10747 + 2.42503i 0.0425010 + 0.0930641i
\(680\) 0 0
\(681\) 19.4486 + 7.78604i 0.745272 + 0.298362i
\(682\) 0 0
\(683\) −10.1209 9.65023i −0.387264 0.369256i 0.471290 0.881978i \(-0.343789\pi\)
−0.858554 + 0.512722i \(0.828637\pi\)
\(684\) 0 0
\(685\) −1.61469 + 3.53568i −0.0616942 + 0.135091i
\(686\) 0 0
\(687\) 6.21481 17.9565i 0.237110 0.685083i
\(688\) 0 0
\(689\) −15.4081 + 1.47129i −0.587000 + 0.0560517i
\(690\) 0 0
\(691\) −26.0624 20.4957i −0.991459 0.779692i −0.0160001 0.999872i \(-0.505093\pi\)
−0.975459 + 0.220180i \(0.929336\pi\)
\(692\) 0 0
\(693\) 0.0687515 1.44327i 0.00261165 0.0548254i
\(694\) 0 0
\(695\) 14.5063 4.25943i 0.550254 0.161569i
\(696\) 0 0
\(697\) −2.55864 + 17.7957i −0.0969155 + 0.674062i
\(698\) 0 0
\(699\) −5.34838 + 9.26367i −0.202294 + 0.350384i
\(700\) 0 0
\(701\) −33.4536 + 31.8979i −1.26352 + 1.20477i −0.295098 + 0.955467i \(0.595352\pi\)
−0.968426 + 0.249301i \(0.919799\pi\)
\(702\) 0 0
\(703\) −20.4259 28.6842i −0.770379 1.08185i
\(704\) 0 0
\(705\) 0.455245 + 9.55677i 0.0171455 + 0.359929i
\(706\) 0 0
\(707\) −2.55096 4.41839i −0.0959388 0.166171i
\(708\) 0 0
\(709\) 7.48908 + 30.8704i 0.281258 + 1.15936i 0.920621 + 0.390457i \(0.127683\pi\)
−0.639363 + 0.768905i \(0.720802\pi\)
\(710\) 0 0
\(711\) 5.94598 1.14599i 0.222992 0.0429781i
\(712\) 0 0
\(713\) 16.4652 + 19.0019i 0.616627 + 0.711625i
\(714\) 0 0
\(715\) −3.25307 + 2.09062i −0.121658 + 0.0781848i
\(716\) 0 0
\(717\) 4.43384 2.28580i 0.165585 0.0853649i
\(718\) 0 0
\(719\) 6.39074 + 1.23171i 0.238334 + 0.0459352i 0.307020 0.951703i \(-0.400668\pi\)
−0.0686853 + 0.997638i \(0.521880\pi\)
\(720\) 0 0
\(721\) −2.90953 + 2.28808i −0.108357 + 0.0852126i
\(722\) 0 0
\(723\) 5.97327 6.89352i 0.222148 0.256373i
\(724\) 0 0
\(725\) 3.71410 15.3097i 0.137938 0.568589i
\(726\) 0 0
\(727\) −14.0701 7.25365i −0.521832 0.269023i 0.177123 0.984189i \(-0.443321\pi\)
−0.698955 + 0.715166i \(0.746351\pi\)
\(728\) 0 0
\(729\) −0.959493 0.281733i −0.0355368 0.0104345i
\(730\) 0 0
\(731\) −28.4904 + 11.4059i −1.05376 + 0.421861i
\(732\) 0 0
\(733\) −3.53861 10.2241i −0.130702 0.377638i 0.860594 0.509291i \(-0.170092\pi\)
−0.991296 + 0.131654i \(0.957971\pi\)
\(734\) 0 0
\(735\) 2.88055 4.04517i 0.106251 0.149208i
\(736\) 0 0
\(737\) 34.3144 + 11.1798i 1.26399 + 0.411814i
\(738\) 0 0
\(739\) −3.94211 + 5.53591i −0.145013 + 0.203642i −0.880694 0.473687i \(-0.842923\pi\)
0.735681 + 0.677328i \(0.236862\pi\)
\(740\) 0 0
\(741\) 1.28376 + 3.70917i 0.0471600 + 0.136260i
\(742\) 0 0
\(743\) 23.7916 9.52474i 0.872831 0.349429i 0.108379 0.994110i \(-0.465434\pi\)
0.764452 + 0.644681i \(0.223010\pi\)
\(744\) 0 0
\(745\) 0.726792 + 0.213405i 0.0266276 + 0.00781857i
\(746\) 0 0
\(747\) 10.0974 + 5.20559i 0.369446 + 0.190463i
\(748\) 0 0
\(749\) 0.918076 3.78436i 0.0335458 0.138278i
\(750\) 0 0
\(751\) −15.4947 + 17.8819i −0.565410 + 0.652518i −0.964403 0.264436i \(-0.914814\pi\)
0.398993 + 0.916954i \(0.369360\pi\)
\(752\) 0 0
\(753\) 0.0577685 0.0454296i 0.00210520 0.00165555i
\(754\) 0 0
\(755\) 4.01664 + 0.774144i 0.146181 + 0.0281740i
\(756\) 0 0
\(757\) 41.8843 21.5929i 1.52231 0.784806i 0.524531 0.851392i \(-0.324241\pi\)
0.997781 + 0.0665856i \(0.0212106\pi\)
\(758\) 0 0
\(759\) −27.6119 + 17.7451i −1.00225 + 0.644107i
\(760\) 0 0
\(761\) −24.3639 28.1174i −0.883189 1.01925i −0.999660 0.0260608i \(-0.991704\pi\)
0.116471 0.993194i \(-0.462842\pi\)
\(762\) 0 0
\(763\) 0.928337 0.178922i 0.0336081 0.00647742i
\(764\) 0 0
\(765\) 0.509323 + 2.09946i 0.0184146 + 0.0759060i
\(766\) 0 0
\(767\) 1.05534 + 1.82791i 0.0381063 + 0.0660020i
\(768\) 0 0
\(769\) 0.159039 + 3.33863i 0.00573508 + 0.120394i 0.999919 + 0.0127017i \(0.00404317\pi\)
−0.994184 + 0.107693i \(0.965654\pi\)
\(770\) 0 0
\(771\) 4.99201 + 7.01029i 0.179783 + 0.252469i
\(772\) 0 0
\(773\) 22.0127 20.9891i 0.791743 0.754926i −0.181823 0.983331i \(-0.558200\pi\)
0.973566 + 0.228406i \(0.0733512\pi\)
\(774\) 0 0
\(775\) −7.56712 + 13.1066i −0.271819 + 0.470804i
\(776\) 0 0
\(777\) 0.509343 3.54256i 0.0182726 0.127089i