Properties

Label 804.2.a.d.1.1
Level 804
Weight 2
Character 804.1
Self dual yes
Analytic conductor 6.420
Analytic rank 1
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 804 = 2^{2} \cdot 3 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 804.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(6.41997232251\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0\)
Character \(\chi\) = 804.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.00000 q^{5} -3.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} -1.00000 q^{5} -3.00000 q^{7} +1.00000 q^{9} -2.00000 q^{11} -2.00000 q^{13} -1.00000 q^{15} -4.00000 q^{17} -4.00000 q^{19} -3.00000 q^{21} +7.00000 q^{23} -4.00000 q^{25} +1.00000 q^{27} -8.00000 q^{29} +3.00000 q^{31} -2.00000 q^{33} +3.00000 q^{35} -3.00000 q^{37} -2.00000 q^{39} +1.00000 q^{41} -11.0000 q^{43} -1.00000 q^{45} +2.00000 q^{49} -4.00000 q^{51} +11.0000 q^{53} +2.00000 q^{55} -4.00000 q^{57} -3.00000 q^{59} +8.00000 q^{61} -3.00000 q^{63} +2.00000 q^{65} -1.00000 q^{67} +7.00000 q^{69} +8.00000 q^{71} -9.00000 q^{73} -4.00000 q^{75} +6.00000 q^{77} +1.00000 q^{81} +11.0000 q^{83} +4.00000 q^{85} -8.00000 q^{87} -6.00000 q^{89} +6.00000 q^{91} +3.00000 q^{93} +4.00000 q^{95} -6.00000 q^{97} -2.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) −3.00000 −1.13389 −0.566947 0.823754i \(-0.691875\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) −3.00000 −0.654654
\(22\) 0 0
\(23\) 7.00000 1.45960 0.729800 0.683660i \(-0.239613\pi\)
0.729800 + 0.683660i \(0.239613\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −8.00000 −1.48556 −0.742781 0.669534i \(-0.766494\pi\)
−0.742781 + 0.669534i \(0.766494\pi\)
\(30\) 0 0
\(31\) 3.00000 0.538816 0.269408 0.963026i \(-0.413172\pi\)
0.269408 + 0.963026i \(0.413172\pi\)
\(32\) 0 0
\(33\) −2.00000 −0.348155
\(34\) 0 0
\(35\) 3.00000 0.507093
\(36\) 0 0
\(37\) −3.00000 −0.493197 −0.246598 0.969118i \(-0.579313\pi\)
−0.246598 + 0.969118i \(0.579313\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 1.00000 0.156174 0.0780869 0.996947i \(-0.475119\pi\)
0.0780869 + 0.996947i \(0.475119\pi\)
\(42\) 0 0
\(43\) −11.0000 −1.67748 −0.838742 0.544529i \(-0.816708\pi\)
−0.838742 + 0.544529i \(0.816708\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) −4.00000 −0.560112
\(52\) 0 0
\(53\) 11.0000 1.51097 0.755483 0.655168i \(-0.227402\pi\)
0.755483 + 0.655168i \(0.227402\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 0 0
\(59\) −3.00000 −0.390567 −0.195283 0.980747i \(-0.562563\pi\)
−0.195283 + 0.980747i \(0.562563\pi\)
\(60\) 0 0
\(61\) 8.00000 1.02430 0.512148 0.858898i \(-0.328850\pi\)
0.512148 + 0.858898i \(0.328850\pi\)
\(62\) 0 0
\(63\) −3.00000 −0.377964
\(64\) 0 0
\(65\) 2.00000 0.248069
\(66\) 0 0
\(67\) −1.00000 −0.122169
\(68\) 0 0
\(69\) 7.00000 0.842701
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) −9.00000 −1.05337 −0.526685 0.850060i \(-0.676565\pi\)
−0.526685 + 0.850060i \(0.676565\pi\)
\(74\) 0 0
\(75\) −4.00000 −0.461880
\(76\) 0 0
\(77\) 6.00000 0.683763
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 11.0000 1.20741 0.603703 0.797209i \(-0.293691\pi\)
0.603703 + 0.797209i \(0.293691\pi\)
\(84\) 0 0
\(85\) 4.00000 0.433861
\(86\) 0 0
\(87\) −8.00000 −0.857690
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 6.00000 0.628971
\(92\) 0 0
\(93\) 3.00000 0.311086
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) 0 0
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 2.00000 0.197066 0.0985329 0.995134i \(-0.468585\pi\)
0.0985329 + 0.995134i \(0.468585\pi\)
\(104\) 0 0
\(105\) 3.00000 0.292770
\(106\) 0 0
\(107\) 8.00000 0.773389 0.386695 0.922208i \(-0.373617\pi\)
0.386695 + 0.922208i \(0.373617\pi\)
\(108\) 0 0
\(109\) −20.0000 −1.91565 −0.957826 0.287348i \(-0.907226\pi\)
−0.957826 + 0.287348i \(0.907226\pi\)
\(110\) 0 0
\(111\) −3.00000 −0.284747
\(112\) 0 0
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 0 0
\(115\) −7.00000 −0.652753
\(116\) 0 0
\(117\) −2.00000 −0.184900
\(118\) 0 0
\(119\) 12.0000 1.10004
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 1.00000 0.0901670
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 0 0
\(129\) −11.0000 −0.968496
\(130\) 0 0
\(131\) 9.00000 0.786334 0.393167 0.919467i \(-0.371379\pi\)
0.393167 + 0.919467i \(0.371379\pi\)
\(132\) 0 0
\(133\) 12.0000 1.04053
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) 9.00000 0.768922 0.384461 0.923141i \(-0.374387\pi\)
0.384461 + 0.923141i \(0.374387\pi\)
\(138\) 0 0
\(139\) −1.00000 −0.0848189 −0.0424094 0.999100i \(-0.513503\pi\)
−0.0424094 + 0.999100i \(0.513503\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.00000 0.334497
\(144\) 0 0
\(145\) 8.00000 0.664364
\(146\) 0 0
\(147\) 2.00000 0.164957
\(148\) 0 0
\(149\) −20.0000 −1.63846 −0.819232 0.573462i \(-0.805600\pi\)
−0.819232 + 0.573462i \(0.805600\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) −4.00000 −0.323381
\(154\) 0 0
\(155\) −3.00000 −0.240966
\(156\) 0 0
\(157\) 23.0000 1.83560 0.917800 0.397043i \(-0.129964\pi\)
0.917800 + 0.397043i \(0.129964\pi\)
\(158\) 0 0
\(159\) 11.0000 0.872357
\(160\) 0 0
\(161\) −21.0000 −1.65503
\(162\) 0 0
\(163\) −16.0000 −1.25322 −0.626608 0.779334i \(-0.715557\pi\)
−0.626608 + 0.779334i \(0.715557\pi\)
\(164\) 0 0
\(165\) 2.00000 0.155700
\(166\) 0 0
\(167\) −3.00000 −0.232147 −0.116073 0.993241i \(-0.537031\pi\)
−0.116073 + 0.993241i \(0.537031\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) 0 0
\(173\) 12.0000 0.912343 0.456172 0.889892i \(-0.349220\pi\)
0.456172 + 0.889892i \(0.349220\pi\)
\(174\) 0 0
\(175\) 12.0000 0.907115
\(176\) 0 0
\(177\) −3.00000 −0.225494
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −5.00000 −0.371647 −0.185824 0.982583i \(-0.559495\pi\)
−0.185824 + 0.982583i \(0.559495\pi\)
\(182\) 0 0
\(183\) 8.00000 0.591377
\(184\) 0 0
\(185\) 3.00000 0.220564
\(186\) 0 0
\(187\) 8.00000 0.585018
\(188\) 0 0
\(189\) −3.00000 −0.218218
\(190\) 0 0
\(191\) 20.0000 1.44715 0.723575 0.690246i \(-0.242498\pi\)
0.723575 + 0.690246i \(0.242498\pi\)
\(192\) 0 0
\(193\) 17.0000 1.22369 0.611843 0.790979i \(-0.290428\pi\)
0.611843 + 0.790979i \(0.290428\pi\)
\(194\) 0 0
\(195\) 2.00000 0.143223
\(196\) 0 0
\(197\) −11.0000 −0.783718 −0.391859 0.920025i \(-0.628168\pi\)
−0.391859 + 0.920025i \(0.628168\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 0 0
\(201\) −1.00000 −0.0705346
\(202\) 0 0
\(203\) 24.0000 1.68447
\(204\) 0 0
\(205\) −1.00000 −0.0698430
\(206\) 0 0
\(207\) 7.00000 0.486534
\(208\) 0 0
\(209\) 8.00000 0.553372
\(210\) 0 0
\(211\) −22.0000 −1.51454 −0.757271 0.653101i \(-0.773468\pi\)
−0.757271 + 0.653101i \(0.773468\pi\)
\(212\) 0 0
\(213\) 8.00000 0.548151
\(214\) 0 0
\(215\) 11.0000 0.750194
\(216\) 0 0
\(217\) −9.00000 −0.610960
\(218\) 0 0
\(219\) −9.00000 −0.608164
\(220\) 0 0
\(221\) 8.00000 0.538138
\(222\) 0 0
\(223\) 2.00000 0.133930 0.0669650 0.997755i \(-0.478668\pi\)
0.0669650 + 0.997755i \(0.478668\pi\)
\(224\) 0 0
\(225\) −4.00000 −0.266667
\(226\) 0 0
\(227\) 21.0000 1.39382 0.696909 0.717159i \(-0.254558\pi\)
0.696909 + 0.717159i \(0.254558\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) 6.00000 0.394771
\(232\) 0 0
\(233\) −19.0000 −1.24473 −0.622366 0.782727i \(-0.713828\pi\)
−0.622366 + 0.782727i \(0.713828\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) −17.0000 −1.09507 −0.547533 0.836784i \(-0.684433\pi\)
−0.547533 + 0.836784i \(0.684433\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −2.00000 −0.127775
\(246\) 0 0
\(247\) 8.00000 0.509028
\(248\) 0 0
\(249\) 11.0000 0.697097
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) −14.0000 −0.880172
\(254\) 0 0
\(255\) 4.00000 0.250490
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 9.00000 0.559233
\(260\) 0 0
\(261\) −8.00000 −0.495188
\(262\) 0 0
\(263\) −11.0000 −0.678289 −0.339145 0.940734i \(-0.610138\pi\)
−0.339145 + 0.940734i \(0.610138\pi\)
\(264\) 0 0
\(265\) −11.0000 −0.675725
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) 0 0
\(269\) −20.0000 −1.21942 −0.609711 0.792624i \(-0.708714\pi\)
−0.609711 + 0.792624i \(0.708714\pi\)
\(270\) 0 0
\(271\) −24.0000 −1.45790 −0.728948 0.684569i \(-0.759990\pi\)
−0.728948 + 0.684569i \(0.759990\pi\)
\(272\) 0 0
\(273\) 6.00000 0.363137
\(274\) 0 0
\(275\) 8.00000 0.482418
\(276\) 0 0
\(277\) −19.0000 −1.14160 −0.570800 0.821089i \(-0.693367\pi\)
−0.570800 + 0.821089i \(0.693367\pi\)
\(278\) 0 0
\(279\) 3.00000 0.179605
\(280\) 0 0
\(281\) 26.0000 1.55103 0.775515 0.631329i \(-0.217490\pi\)
0.775515 + 0.631329i \(0.217490\pi\)
\(282\) 0 0
\(283\) 20.0000 1.18888 0.594438 0.804141i \(-0.297374\pi\)
0.594438 + 0.804141i \(0.297374\pi\)
\(284\) 0 0
\(285\) 4.00000 0.236940
\(286\) 0 0
\(287\) −3.00000 −0.177084
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) −6.00000 −0.351726
\(292\) 0 0
\(293\) 2.00000 0.116841 0.0584206 0.998292i \(-0.481394\pi\)
0.0584206 + 0.998292i \(0.481394\pi\)
\(294\) 0 0
\(295\) 3.00000 0.174667
\(296\) 0 0
\(297\) −2.00000 −0.116052
\(298\) 0 0
\(299\) −14.0000 −0.809641
\(300\) 0 0
\(301\) 33.0000 1.90209
\(302\) 0 0
\(303\) −6.00000 −0.344691
\(304\) 0 0
\(305\) −8.00000 −0.458079
\(306\) 0 0
\(307\) −16.0000 −0.913168 −0.456584 0.889680i \(-0.650927\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(308\) 0 0
\(309\) 2.00000 0.113776
\(310\) 0 0
\(311\) 4.00000 0.226819 0.113410 0.993548i \(-0.463823\pi\)
0.113410 + 0.993548i \(0.463823\pi\)
\(312\) 0 0
\(313\) 24.0000 1.35656 0.678280 0.734803i \(-0.262726\pi\)
0.678280 + 0.734803i \(0.262726\pi\)
\(314\) 0 0
\(315\) 3.00000 0.169031
\(316\) 0 0
\(317\) −32.0000 −1.79730 −0.898650 0.438667i \(-0.855451\pi\)
−0.898650 + 0.438667i \(0.855451\pi\)
\(318\) 0 0
\(319\) 16.0000 0.895828
\(320\) 0 0
\(321\) 8.00000 0.446516
\(322\) 0 0
\(323\) 16.0000 0.890264
\(324\) 0 0
\(325\) 8.00000 0.443760
\(326\) 0 0
\(327\) −20.0000 −1.10600
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −21.0000 −1.15426 −0.577132 0.816651i \(-0.695828\pi\)
−0.577132 + 0.816651i \(0.695828\pi\)
\(332\) 0 0
\(333\) −3.00000 −0.164399
\(334\) 0 0
\(335\) 1.00000 0.0546358
\(336\) 0 0
\(337\) 8.00000 0.435788 0.217894 0.975972i \(-0.430081\pi\)
0.217894 + 0.975972i \(0.430081\pi\)
\(338\) 0 0
\(339\) −2.00000 −0.108625
\(340\) 0 0
\(341\) −6.00000 −0.324918
\(342\) 0 0
\(343\) 15.0000 0.809924
\(344\) 0 0
\(345\) −7.00000 −0.376867
\(346\) 0 0
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 0 0
\(349\) −25.0000 −1.33822 −0.669110 0.743164i \(-0.733324\pi\)
−0.669110 + 0.743164i \(0.733324\pi\)
\(350\) 0 0
\(351\) −2.00000 −0.106752
\(352\) 0 0
\(353\) 3.00000 0.159674 0.0798369 0.996808i \(-0.474560\pi\)
0.0798369 + 0.996808i \(0.474560\pi\)
\(354\) 0 0
\(355\) −8.00000 −0.424596
\(356\) 0 0
\(357\) 12.0000 0.635107
\(358\) 0 0
\(359\) 3.00000 0.158334 0.0791670 0.996861i \(-0.474774\pi\)
0.0791670 + 0.996861i \(0.474774\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) −7.00000 −0.367405
\(364\) 0 0
\(365\) 9.00000 0.471082
\(366\) 0 0
\(367\) −20.0000 −1.04399 −0.521996 0.852948i \(-0.674812\pi\)
−0.521996 + 0.852948i \(0.674812\pi\)
\(368\) 0 0
\(369\) 1.00000 0.0520579
\(370\) 0 0
\(371\) −33.0000 −1.71327
\(372\) 0 0
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) 0 0
\(375\) 9.00000 0.464758
\(376\) 0 0
\(377\) 16.0000 0.824042
\(378\) 0 0
\(379\) 19.0000 0.975964 0.487982 0.872854i \(-0.337733\pi\)
0.487982 + 0.872854i \(0.337733\pi\)
\(380\) 0 0
\(381\) 2.00000 0.102463
\(382\) 0 0
\(383\) −28.0000 −1.43073 −0.715367 0.698749i \(-0.753740\pi\)
−0.715367 + 0.698749i \(0.753740\pi\)
\(384\) 0 0
\(385\) −6.00000 −0.305788
\(386\) 0 0
\(387\) −11.0000 −0.559161
\(388\) 0 0
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) −28.0000 −1.41602
\(392\) 0 0
\(393\) 9.00000 0.453990
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −38.0000 −1.90717 −0.953583 0.301131i \(-0.902636\pi\)
−0.953583 + 0.301131i \(0.902636\pi\)
\(398\) 0 0
\(399\) 12.0000 0.600751
\(400\) 0 0
\(401\) −17.0000 −0.848939 −0.424470 0.905442i \(-0.639539\pi\)
−0.424470 + 0.905442i \(0.639539\pi\)
\(402\) 0 0
\(403\) −6.00000 −0.298881
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 6.00000 0.297409
\(408\) 0 0
\(409\) 4.00000 0.197787 0.0988936 0.995098i \(-0.468470\pi\)
0.0988936 + 0.995098i \(0.468470\pi\)
\(410\) 0 0
\(411\) 9.00000 0.443937
\(412\) 0 0
\(413\) 9.00000 0.442861
\(414\) 0 0
\(415\) −11.0000 −0.539969
\(416\) 0 0
\(417\) −1.00000 −0.0489702
\(418\) 0 0
\(419\) 3.00000 0.146560 0.0732798 0.997311i \(-0.476653\pi\)
0.0732798 + 0.997311i \(0.476653\pi\)
\(420\) 0 0
\(421\) 11.0000 0.536107 0.268054 0.963404i \(-0.413620\pi\)
0.268054 + 0.963404i \(0.413620\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 16.0000 0.776114
\(426\) 0 0
\(427\) −24.0000 −1.16144
\(428\) 0 0
\(429\) 4.00000 0.193122
\(430\) 0 0
\(431\) −23.0000 −1.10787 −0.553936 0.832560i \(-0.686875\pi\)
−0.553936 + 0.832560i \(0.686875\pi\)
\(432\) 0 0
\(433\) −8.00000 −0.384455 −0.192228 0.981350i \(-0.561571\pi\)
−0.192228 + 0.981350i \(0.561571\pi\)
\(434\) 0 0
\(435\) 8.00000 0.383571
\(436\) 0 0
\(437\) −28.0000 −1.33942
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) 0 0
\(443\) −36.0000 −1.71041 −0.855206 0.518289i \(-0.826569\pi\)
−0.855206 + 0.518289i \(0.826569\pi\)
\(444\) 0 0
\(445\) 6.00000 0.284427
\(446\) 0 0
\(447\) −20.0000 −0.945968
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) −2.00000 −0.0941763
\(452\) 0 0
\(453\) 16.0000 0.751746
\(454\) 0 0
\(455\) −6.00000 −0.281284
\(456\) 0 0
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) 0 0
\(459\) −4.00000 −0.186704
\(460\) 0 0
\(461\) −12.0000 −0.558896 −0.279448 0.960161i \(-0.590151\pi\)
−0.279448 + 0.960161i \(0.590151\pi\)
\(462\) 0 0
\(463\) 11.0000 0.511213 0.255607 0.966781i \(-0.417725\pi\)
0.255607 + 0.966781i \(0.417725\pi\)
\(464\) 0 0
\(465\) −3.00000 −0.139122
\(466\) 0 0
\(467\) −32.0000 −1.48078 −0.740392 0.672176i \(-0.765360\pi\)
−0.740392 + 0.672176i \(0.765360\pi\)
\(468\) 0 0
\(469\) 3.00000 0.138527
\(470\) 0 0
\(471\) 23.0000 1.05978
\(472\) 0 0
\(473\) 22.0000 1.01156
\(474\) 0 0
\(475\) 16.0000 0.734130
\(476\) 0 0
\(477\) 11.0000 0.503655
\(478\) 0 0
\(479\) −29.0000 −1.32504 −0.662522 0.749043i \(-0.730514\pi\)
−0.662522 + 0.749043i \(0.730514\pi\)
\(480\) 0 0
\(481\) 6.00000 0.273576
\(482\) 0 0
\(483\) −21.0000 −0.955533
\(484\) 0 0
\(485\) 6.00000 0.272446
\(486\) 0 0
\(487\) 3.00000 0.135943 0.0679715 0.997687i \(-0.478347\pi\)
0.0679715 + 0.997687i \(0.478347\pi\)
\(488\) 0 0
\(489\) −16.0000 −0.723545
\(490\) 0 0
\(491\) −9.00000 −0.406164 −0.203082 0.979162i \(-0.565096\pi\)
−0.203082 + 0.979162i \(0.565096\pi\)
\(492\) 0 0
\(493\) 32.0000 1.44121
\(494\) 0 0
\(495\) 2.00000 0.0898933
\(496\) 0 0
\(497\) −24.0000 −1.07655
\(498\) 0 0
\(499\) 12.0000 0.537194 0.268597 0.963253i \(-0.413440\pi\)
0.268597 + 0.963253i \(0.413440\pi\)
\(500\) 0 0
\(501\) −3.00000 −0.134030
\(502\) 0 0
\(503\) 30.0000 1.33763 0.668817 0.743427i \(-0.266801\pi\)
0.668817 + 0.743427i \(0.266801\pi\)
\(504\) 0 0
\(505\) 6.00000 0.266996
\(506\) 0 0
\(507\) −9.00000 −0.399704
\(508\) 0 0
\(509\) −36.0000 −1.59567 −0.797836 0.602875i \(-0.794022\pi\)
−0.797836 + 0.602875i \(0.794022\pi\)
\(510\) 0 0
\(511\) 27.0000 1.19441
\(512\) 0 0
\(513\) −4.00000 −0.176604
\(514\) 0 0
\(515\) −2.00000 −0.0881305
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 12.0000 0.526742
\(520\) 0 0
\(521\) 2.00000 0.0876216 0.0438108 0.999040i \(-0.486050\pi\)
0.0438108 + 0.999040i \(0.486050\pi\)
\(522\) 0 0
\(523\) −14.0000 −0.612177 −0.306089 0.952003i \(-0.599020\pi\)
−0.306089 + 0.952003i \(0.599020\pi\)
\(524\) 0 0
\(525\) 12.0000 0.523723
\(526\) 0 0
\(527\) −12.0000 −0.522728
\(528\) 0 0
\(529\) 26.0000 1.13043
\(530\) 0 0
\(531\) −3.00000 −0.130189
\(532\) 0 0
\(533\) −2.00000 −0.0866296
\(534\) 0 0
\(535\) −8.00000 −0.345870
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4.00000 −0.172292
\(540\) 0 0
\(541\) 10.0000 0.429934 0.214967 0.976621i \(-0.431036\pi\)
0.214967 + 0.976621i \(0.431036\pi\)
\(542\) 0 0
\(543\) −5.00000 −0.214571
\(544\) 0 0
\(545\) 20.0000 0.856706
\(546\) 0 0
\(547\) 33.0000 1.41098 0.705489 0.708721i \(-0.250727\pi\)
0.705489 + 0.708721i \(0.250727\pi\)
\(548\) 0 0
\(549\) 8.00000 0.341432
\(550\) 0 0
\(551\) 32.0000 1.36325
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 3.00000 0.127343
\(556\) 0 0
\(557\) 8.00000 0.338971 0.169485 0.985533i \(-0.445789\pi\)
0.169485 + 0.985533i \(0.445789\pi\)
\(558\) 0 0
\(559\) 22.0000 0.930501
\(560\) 0 0
\(561\) 8.00000 0.337760
\(562\) 0 0
\(563\) −6.00000 −0.252870 −0.126435 0.991975i \(-0.540353\pi\)
−0.126435 + 0.991975i \(0.540353\pi\)
\(564\) 0 0
\(565\) 2.00000 0.0841406
\(566\) 0 0
\(567\) −3.00000 −0.125988
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 16.0000 0.669579 0.334790 0.942293i \(-0.391335\pi\)
0.334790 + 0.942293i \(0.391335\pi\)
\(572\) 0 0
\(573\) 20.0000 0.835512
\(574\) 0 0
\(575\) −28.0000 −1.16768
\(576\) 0 0
\(577\) −2.00000 −0.0832611 −0.0416305 0.999133i \(-0.513255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) 0 0
\(579\) 17.0000 0.706496
\(580\) 0 0
\(581\) −33.0000 −1.36907
\(582\) 0 0
\(583\) −22.0000 −0.911147
\(584\) 0 0
\(585\) 2.00000 0.0826898
\(586\) 0 0
\(587\) −16.0000 −0.660391 −0.330195 0.943913i \(-0.607115\pi\)
−0.330195 + 0.943913i \(0.607115\pi\)
\(588\) 0 0
\(589\) −12.0000 −0.494451
\(590\) 0 0
\(591\) −11.0000 −0.452480
\(592\) 0 0
\(593\) 3.00000 0.123195 0.0615976 0.998101i \(-0.480380\pi\)
0.0615976 + 0.998101i \(0.480380\pi\)
\(594\) 0 0
\(595\) −12.0000 −0.491952
\(596\) 0 0
\(597\) 16.0000 0.654836
\(598\) 0 0
\(599\) 38.0000 1.55264 0.776319 0.630340i \(-0.217085\pi\)
0.776319 + 0.630340i \(0.217085\pi\)
\(600\) 0 0
\(601\) 22.0000 0.897399 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(602\) 0 0
\(603\) −1.00000 −0.0407231
\(604\) 0 0
\(605\) 7.00000 0.284590
\(606\) 0 0
\(607\) 4.00000 0.162355 0.0811775 0.996700i \(-0.474132\pi\)
0.0811775 + 0.996700i \(0.474132\pi\)
\(608\) 0 0
\(609\) 24.0000 0.972529
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 17.0000 0.686624 0.343312 0.939222i \(-0.388451\pi\)
0.343312 + 0.939222i \(0.388451\pi\)
\(614\) 0 0
\(615\) −1.00000 −0.0403239
\(616\) 0 0
\(617\) 8.00000 0.322068 0.161034 0.986949i \(-0.448517\pi\)
0.161034 + 0.986949i \(0.448517\pi\)
\(618\) 0 0
\(619\) −30.0000 −1.20580 −0.602901 0.797816i \(-0.705989\pi\)
−0.602901 + 0.797816i \(0.705989\pi\)
\(620\) 0 0
\(621\) 7.00000 0.280900
\(622\) 0 0
\(623\) 18.0000 0.721155
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 8.00000 0.319489
\(628\) 0 0
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) −24.0000 −0.955425 −0.477712 0.878516i \(-0.658534\pi\)
−0.477712 + 0.878516i \(0.658534\pi\)
\(632\) 0 0
\(633\) −22.0000 −0.874421
\(634\) 0 0
\(635\) −2.00000 −0.0793676
\(636\) 0 0
\(637\) −4.00000 −0.158486
\(638\) 0 0
\(639\) 8.00000 0.316475
\(640\) 0 0
\(641\) −19.0000 −0.750455 −0.375227 0.926933i \(-0.622435\pi\)
−0.375227 + 0.926933i \(0.622435\pi\)
\(642\) 0 0
\(643\) 6.00000 0.236617 0.118308 0.992977i \(-0.462253\pi\)
0.118308 + 0.992977i \(0.462253\pi\)
\(644\) 0 0
\(645\) 11.0000 0.433125
\(646\) 0 0
\(647\) 38.0000 1.49393 0.746967 0.664861i \(-0.231509\pi\)
0.746967 + 0.664861i \(0.231509\pi\)
\(648\) 0 0
\(649\) 6.00000 0.235521
\(650\) 0 0
\(651\) −9.00000 −0.352738
\(652\) 0 0
\(653\) −27.0000 −1.05659 −0.528296 0.849060i \(-0.677169\pi\)
−0.528296 + 0.849060i \(0.677169\pi\)
\(654\) 0 0
\(655\) −9.00000 −0.351659
\(656\) 0 0
\(657\) −9.00000 −0.351123
\(658\) 0 0
\(659\) −27.0000 −1.05177 −0.525885 0.850555i \(-0.676266\pi\)
−0.525885 + 0.850555i \(0.676266\pi\)
\(660\) 0 0
\(661\) 2.00000 0.0777910 0.0388955 0.999243i \(-0.487616\pi\)
0.0388955 + 0.999243i \(0.487616\pi\)
\(662\) 0 0
\(663\) 8.00000 0.310694
\(664\) 0 0
\(665\) −12.0000 −0.465340
\(666\) 0 0
\(667\) −56.0000 −2.16833
\(668\) 0 0
\(669\) 2.00000 0.0773245
\(670\) 0 0
\(671\) −16.0000 −0.617673
\(672\) 0 0
\(673\) 22.0000 0.848038 0.424019 0.905653i \(-0.360619\pi\)
0.424019 + 0.905653i \(0.360619\pi\)
\(674\) 0 0
\(675\) −4.00000 −0.153960
\(676\) 0 0
\(677\) 37.0000 1.42203 0.711013 0.703179i \(-0.248237\pi\)
0.711013 + 0.703179i \(0.248237\pi\)
\(678\) 0 0
\(679\) 18.0000 0.690777
\(680\) 0 0
\(681\) 21.0000 0.804722
\(682\) 0 0
\(683\) 36.0000 1.37750 0.688751 0.724998i \(-0.258159\pi\)
0.688751 + 0.724998i \(0.258159\pi\)
\(684\) 0 0
\(685\) −9.00000 −0.343872
\(686\) 0 0
\(687\) 14.0000 0.534133
\(688\) 0 0
\(689\) −22.0000 −0.838133
\(690\) 0 0
\(691\) −50.0000 −1.90209 −0.951045 0.309053i \(-0.899988\pi\)
−0.951045 + 0.309053i \(0.899988\pi\)
\(692\) 0 0
\(693\) 6.00000 0.227921
\(694\) 0 0
\(695\) 1.00000 0.0379322
\(696\) 0 0
\(697\) −4.00000 −0.151511
\(698\) 0 0
\(699\) −19.0000 −0.718646
\(700\) 0 0
\(701\) −3.00000 −0.113308 −0.0566542 0.998394i \(-0.518043\pi\)
−0.0566542 + 0.998394i \(0.518043\pi\)
\(702\) 0 0
\(703\) 12.0000 0.452589
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 18.0000 0.676960
\(708\) 0 0
\(709\) 25.0000 0.938895 0.469447 0.882960i \(-0.344453\pi\)
0.469447 + 0.882960i \(0.344453\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 21.0000 0.786456
\(714\) 0 0
\(715\) −4.00000 −0.149592
\(716\) 0 0
\(717\) −6.00000 −0.224074
\(718\) 0 0
\(719\) 13.0000 0.484818 0.242409 0.970174i \(-0.422062\pi\)
0.242409 + 0.970174i \(0.422062\pi\)
\(720\) 0 0
\(721\) −6.00000 −0.223452
\(722\) 0 0
\(723\) −17.0000 −0.632237
\(724\) 0 0
\(725\) 32.0000 1.18845
\(726\) 0 0
\(727\) 7.00000 0.259616 0.129808 0.991539i \(-0.458564\pi\)
0.129808 + 0.991539i \(0.458564\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 44.0000 1.62740
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 0 0
\(735\) −2.00000 −0.0737711
\(736\) 0 0
\(737\) 2.00000 0.0736709
\(738\) 0 0
\(739\) 15.0000 0.551784 0.275892 0.961189i \(-0.411027\pi\)
0.275892 + 0.961189i \(0.411027\pi\)
\(740\) 0 0
\(741\) 8.00000 0.293887
\(742\) 0 0
\(743\) −9.00000 −0.330178 −0.165089 0.986279i \(-0.552791\pi\)
−0.165089 + 0.986279i \(0.552791\pi\)
\(744\) 0 0
\(745\) 20.0000 0.732743
\(746\) 0 0
\(747\) 11.0000 0.402469
\(748\) 0 0
\(749\) −24.0000 −0.876941
\(750\) 0 0
\(751\) −42.0000 −1.53260 −0.766301 0.642482i \(-0.777905\pi\)
−0.766301 + 0.642482i \(0.777905\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −16.0000 −0.582300
\(756\) 0 0
\(757\) −18.0000 −0.654221 −0.327111 0.944986i \(-0.606075\pi\)
−0.327111 + 0.944986i \(0.606075\pi\)
\(758\) 0 0
\(759\) −14.0000 −0.508168
\(760\) 0 0
\(761\) −18.0000 −0.652499 −0.326250 0.945284i \(-0.605785\pi\)
−0.326250 + 0.945284i \(0.605785\pi\)
\(762\) 0 0
\(763\) 60.0000 2.17215
\(764\) 0 0
\(765\) 4.00000 0.144620
\(766\) 0 0
\(767\) 6.00000 0.216647
\(768\) 0 0
\(769\) 30.0000 1.08183 0.540914 0.841078i \(-0.318079\pi\)
0.540914 + 0.841078i \(0.318079\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) −12.0000 −0.431053
\(776\) 0 0
\(777\) 9.00000 0.322873
\(778\) 0 0
\(779\) −4.00000 −0.143315
\(780\) 0 0
\(781\) −16.0000 −0.572525
\(782\) 0 0
\(783\) −8.00000 −0.285897
\(784\) 0 0
\(785\) −23.0000 −0.820905
\(786\) 0 0
\(787\) 13.0000 0.463400 0.231700 0.972787i \(-0.425571\pi\)
0.231700 + 0.972787i \(0.425571\pi\)
\(788\) 0 0
\(789\) −11.0000 −0.391610
\(790\) 0 0
\(791\) 6.00000 0.213335
\(792\) 0 0
\(793\) −16.0000 −0.568177
\(794\) 0 0
\(795\) −11.0000 −0.390130
\(796\) 0 0
\(797\) 18.0000 0.637593 0.318796 0.947823i \(-0.396721\pi\)
0.318796 + 0.947823i \(0.396721\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 0 0
\(803\) 18.0000 0.635206
\(804\) 0 0
\(805\) 21.0000 0.740153
\(806\) 0 0
\(807\) −20.0000 −0.704033
\(808\) 0 0
\(809\) 43.0000 1.51180 0.755900 0.654687i \(-0.227200\pi\)
0.755900 + 0.654687i \(0.227200\pi\)
\(810\) 0 0
\(811\) −43.0000 −1.50993 −0.754967 0.655763i \(-0.772347\pi\)
−0.754967 + 0.655763i \(0.772347\pi\)
\(812\) 0 0
\(813\) −24.0000 −0.841717
\(814\) 0 0
\(815\) 16.0000 0.560456
\(816\) 0 0
\(817\) 44.0000 1.53937
\(818\) 0 0
\(819\) 6.00000 0.209657
\(820\) 0 0
\(821\) −28.0000 −0.977207 −0.488603 0.872506i \(-0.662493\pi\)
−0.488603 + 0.872506i \(0.662493\pi\)
\(822\) 0 0
\(823\) 24.0000 0.836587 0.418294 0.908312i \(-0.362628\pi\)
0.418294 + 0.908312i \(0.362628\pi\)
\(824\) 0 0
\(825\) 8.00000 0.278524
\(826\) 0 0
\(827\) 36.0000 1.25184 0.625921 0.779886i \(-0.284723\pi\)
0.625921 + 0.779886i \(0.284723\pi\)
\(828\) 0 0
\(829\) 2.00000 0.0694629 0.0347314 0.999397i \(-0.488942\pi\)
0.0347314 + 0.999397i \(0.488942\pi\)
\(830\) 0 0
\(831\) −19.0000 −0.659103
\(832\) 0 0
\(833\) −8.00000 −0.277184
\(834\) 0 0
\(835\) 3.00000 0.103819
\(836\) 0 0
\(837\) 3.00000 0.103695
\(838\) 0 0
\(839\) 32.0000 1.10476 0.552381 0.833592i \(-0.313719\pi\)
0.552381 + 0.833592i \(0.313719\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) 0 0
\(843\) 26.0000 0.895488
\(844\) 0 0
\(845\) 9.00000 0.309609
\(846\) 0 0
\(847\) 21.0000 0.721569
\(848\) 0 0
\(849\) 20.0000 0.686398
\(850\) 0 0
\(851\) −21.0000 −0.719871
\(852\) 0 0
\(853\) 10.0000 0.342393 0.171197 0.985237i \(-0.445237\pi\)
0.171197 + 0.985237i \(0.445237\pi\)
\(854\) 0 0
\(855\) 4.00000 0.136797
\(856\) 0 0
\(857\) 51.0000 1.74213 0.871063 0.491171i \(-0.163431\pi\)
0.871063 + 0.491171i \(0.163431\pi\)
\(858\) 0 0
\(859\) −32.0000 −1.09183 −0.545913 0.837842i \(-0.683817\pi\)
−0.545913 + 0.837842i \(0.683817\pi\)
\(860\) 0 0
\(861\) −3.00000 −0.102240
\(862\) 0 0
\(863\) 33.0000 1.12333 0.561667 0.827364i \(-0.310160\pi\)
0.561667 + 0.827364i \(0.310160\pi\)
\(864\) 0 0
\(865\) −12.0000 −0.408012
\(866\) 0 0
\(867\) −1.00000 −0.0339618
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 2.00000 0.0677674
\(872\) 0 0
\(873\) −6.00000 −0.203069
\(874\) 0 0
\(875\) −27.0000 −0.912767
\(876\) 0 0
\(877\) −2.00000 −0.0675352 −0.0337676 0.999430i \(-0.510751\pi\)
−0.0337676 + 0.999430i \(0.510751\pi\)
\(878\) 0 0
\(879\) 2.00000 0.0674583
\(880\) 0 0
\(881\) −40.0000 −1.34763 −0.673817 0.738898i \(-0.735346\pi\)
−0.673817 + 0.738898i \(0.735346\pi\)
\(882\) 0 0
\(883\) −5.00000 −0.168263 −0.0841317 0.996455i \(-0.526812\pi\)
−0.0841317 + 0.996455i \(0.526812\pi\)
\(884\) 0 0
\(885\) 3.00000 0.100844
\(886\) 0 0
\(887\) 39.0000 1.30949 0.654746 0.755849i \(-0.272776\pi\)
0.654746 + 0.755849i \(0.272776\pi\)
\(888\) 0 0
\(889\) −6.00000 −0.201234
\(890\) 0 0
\(891\) −2.00000 −0.0670025
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −14.0000 −0.467446
\(898\) 0 0
\(899\) −24.0000 −0.800445
\(900\) 0 0
\(901\) −44.0000 −1.46585
\(902\) 0 0
\(903\) 33.0000 1.09817
\(904\) 0 0
\(905\) 5.00000 0.166206
\(906\) 0 0
\(907\) −16.0000 −0.531271 −0.265636 0.964073i \(-0.585582\pi\)
−0.265636 + 0.964073i \(0.585582\pi\)
\(908\) 0 0
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) −8.00000 −0.265052 −0.132526 0.991180i \(-0.542309\pi\)
−0.132526 + 0.991180i \(0.542309\pi\)
\(912\) 0 0
\(913\) −22.0000 −0.728094
\(914\) 0 0
\(915\) −8.00000 −0.264472
\(916\) 0 0
\(917\) −27.0000 −0.891619
\(918\) 0 0
\(919\) 45.0000 1.48441 0.742207 0.670171i \(-0.233779\pi\)
0.742207 + 0.670171i \(0.233779\pi\)
\(920\) 0 0
\(921\) −16.0000 −0.527218
\(922\) 0 0
\(923\) −16.0000 −0.526646
\(924\) 0 0
\(925\) 12.0000 0.394558
\(926\) 0 0
\(927\) 2.00000 0.0656886
\(928\) 0 0
\(929\) 42.0000 1.37798 0.688988 0.724773i \(-0.258055\pi\)
0.688988 + 0.724773i \(0.258055\pi\)
\(930\) 0 0
\(931\) −8.00000 −0.262189
\(932\) 0 0
\(933\) 4.00000 0.130954
\(934\) 0 0
\(935\) −8.00000 −0.261628
\(936\) 0 0
\(937\) 28.0000 0.914720 0.457360 0.889282i \(-0.348795\pi\)
0.457360 + 0.889282i \(0.348795\pi\)
\(938\) 0 0
\(939\) 24.0000 0.783210
\(940\) 0 0
\(941\) 38.0000 1.23876 0.619382 0.785090i \(-0.287383\pi\)
0.619382 + 0.785090i \(0.287383\pi\)
\(942\) 0 0
\(943\) 7.00000 0.227951
\(944\) 0 0
\(945\) 3.00000 0.0975900
\(946\) 0 0
\(947\) −33.0000 −1.07236 −0.536178 0.844105i \(-0.680132\pi\)
−0.536178 + 0.844105i \(0.680132\pi\)
\(948\) 0 0
\(949\) 18.0000 0.584305
\(950\) 0 0
\(951\) −32.0000 −1.03767
\(952\) 0 0
\(953\) 16.0000 0.518291 0.259145 0.965838i \(-0.416559\pi\)
0.259145 + 0.965838i \(0.416559\pi\)
\(954\) 0 0
\(955\) −20.0000 −0.647185
\(956\) 0 0
\(957\) 16.0000 0.517207
\(958\) 0 0
\(959\) −27.0000 −0.871875
\(960\) 0 0
\(961\) −22.0000 −0.709677
\(962\) 0 0
\(963\) 8.00000 0.257796
\(964\) 0 0
\(965\) −17.0000 −0.547249
\(966\) 0 0
\(967\) −56.0000 −1.80084 −0.900419 0.435023i \(-0.856740\pi\)
−0.900419 + 0.435023i \(0.856740\pi\)
\(968\) 0 0
\(969\) 16.0000 0.513994
\(970\) 0 0
\(971\) −28.0000 −0.898563 −0.449281 0.893390i \(-0.648320\pi\)
−0.449281 + 0.893390i \(0.648320\pi\)
\(972\) 0 0
\(973\) 3.00000 0.0961756
\(974\) 0 0
\(975\) 8.00000 0.256205
\(976\) 0 0
\(977\) −6.00000 −0.191957 −0.0959785 0.995383i \(-0.530598\pi\)
−0.0959785 + 0.995383i \(0.530598\pi\)
\(978\) 0 0
\(979\) 12.0000 0.383522
\(980\) 0 0
\(981\) −20.0000 −0.638551
\(982\) 0 0
\(983\) −40.0000 −1.27580 −0.637901 0.770118i \(-0.720197\pi\)
−0.637901 + 0.770118i \(0.720197\pi\)
\(984\) 0 0
\(985\) 11.0000 0.350489
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −77.0000 −2.44846
\(990\) 0 0
\(991\) 25.0000 0.794151 0.397076 0.917786i \(-0.370025\pi\)
0.397076 + 0.917786i \(0.370025\pi\)
\(992\) 0 0
\(993\) −21.0000 −0.666415
\(994\) 0 0
\(995\) −16.0000 −0.507234
\(996\) 0 0
\(997\) 39.0000 1.23514 0.617571 0.786515i \(-0.288117\pi\)
0.617571 + 0.786515i \(0.288117\pi\)
\(998\) 0 0
\(999\) −3.00000 −0.0949158
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 804.2.a.d.1.1 1
3.2 odd 2 2412.2.a.d.1.1 1
4.3 odd 2 3216.2.a.c.1.1 1
12.11 even 2 9648.2.a.m.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
804.2.a.d.1.1 1 1.1 even 1 trivial
2412.2.a.d.1.1 1 3.2 odd 2
3216.2.a.c.1.1 1 4.3 odd 2
9648.2.a.m.1.1 1 12.11 even 2