Properties

Label 801.2.m
Level $801$
Weight $2$
Character orbit 801.m
Rep. character $\chi_{801}(64,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $360$
Newform subspaces $4$
Sturm bound $180$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 801 = 3^{2} \cdot 89 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 801.m (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 89 \)
Character field: \(\Q(\zeta_{11})\)
Newform subspaces: \( 4 \)
Sturm bound: \(180\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(801, [\chi])\).

Total New Old
Modular forms 940 380 560
Cusp forms 860 360 500
Eisenstein series 80 20 60

Trace form

\( 360 q + 9 q^{2} - 43 q^{4} + 9 q^{5} - 9 q^{7} + 5 q^{8} - 20 q^{10} + 18 q^{11} - 5 q^{13} + 58 q^{14} - 35 q^{16} + 42 q^{17} + 3 q^{19} - 3 q^{20} + 95 q^{22} + 17 q^{23} + 15 q^{25} + 7 q^{26} - 25 q^{28}+ \cdots - 94 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(801, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
801.2.m.a 801.m 89.e $60$ $6.396$ None 89.2.e.a \(7\) \(0\) \(1\) \(-9\) $\mathrm{SU}(2)[C_{11}]$
801.2.m.b 801.m 89.e $80$ $6.396$ None 267.2.i.a \(1\) \(0\) \(4\) \(-2\) $\mathrm{SU}(2)[C_{11}]$
801.2.m.c 801.m 89.e $80$ $6.396$ None 267.2.i.b \(1\) \(0\) \(4\) \(2\) $\mathrm{SU}(2)[C_{11}]$
801.2.m.d 801.m 89.e $140$ $6.396$ None 801.2.m.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{11}]$

Decomposition of \(S_{2}^{\mathrm{old}}(801, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(801, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(89, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(267, [\chi])\)\(^{\oplus 2}\)