Defining parameters
Level: | \( N \) | \(=\) | \( 80 = 2^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 80.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(80, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 90 | 22 | 68 |
Cusp forms | 78 | 20 | 58 |
Eisenstein series | 12 | 2 | 10 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(80, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
80.8.c.a | $2$ | $24.991$ | \(\Q(\sqrt{-29}) \) | None | \(0\) | \(0\) | \(150\) | \(0\) | \(q+3\beta q^{3}+(75+5^{2}\beta )q^{5}-39\beta q^{7}+\cdots\) |
80.8.c.b | $2$ | $24.991$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(550\) | \(0\) | \(q+17\beta q^{3}+(-25\beta+275)q^{5}-53\beta q^{7}+\cdots\) |
80.8.c.c | $4$ | $24.991$ | \(\mathbb{Q}[x]/(x^{4} + \cdots)\) | None | \(0\) | \(0\) | \(-156\) | \(0\) | \(q+\beta _{1}q^{3}+(-39+\beta _{1}+\beta _{2})q^{5}+(-5\beta _{1}+\cdots)q^{7}+\cdots\) |
80.8.c.d | $4$ | $24.991$ | \(\Q(i, \sqrt{31})\) | None | \(0\) | \(0\) | \(60\) | \(0\) | \(q+(-2\beta _{1}-\beta _{3})q^{3}+(15+\beta _{2}+3\beta _{3})q^{5}+\cdots\) |
80.8.c.e | $8$ | $24.991$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(0\) | \(-744\) | \(0\) | \(q+\beta _{1}q^{3}+(-93+\beta _{1}+\beta _{3})q^{5}+(3\beta _{1}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{8}^{\mathrm{old}}(80, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(80, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)