Properties

Label 80.8.c
Level $80$
Weight $8$
Character orbit 80.c
Rep. character $\chi_{80}(49,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $5$
Sturm bound $96$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 80.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(96\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(80, [\chi])\).

Total New Old
Modular forms 90 22 68
Cusp forms 78 20 58
Eisenstein series 12 2 10

Trace form

\( 20 q - 140 q^{5} - 13124 q^{9} - 7984 q^{11} - 20912 q^{15} + 10864 q^{19} + 3200 q^{21} + 6212 q^{25} - 3592 q^{29} + 44736 q^{31} - 36784 q^{35} + 11552 q^{39} - 347816 q^{41} + 430716 q^{45} - 3183892 q^{49}+ \cdots + 10510576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(80, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
80.8.c.a 80.c 5.b $2$ $24.991$ \(\Q(\sqrt{-29}) \) None 5.8.b.a \(0\) \(0\) \(150\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3\beta q^{3}+(75+5^{2}\beta )q^{5}-39\beta q^{7}+\cdots\)
80.8.c.b 80.c 5.b $2$ $24.991$ \(\Q(\sqrt{-1}) \) None 40.8.c.a \(0\) \(0\) \(550\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+17\beta q^{3}+(-25\beta+275)q^{5}-53\beta q^{7}+\cdots\)
80.8.c.c 80.c 5.b $4$ $24.991$ \(\mathbb{Q}[x]/(x^{4} + \cdots)\) None 20.8.c.a \(0\) \(0\) \(-156\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(-39+\beta _{1}+\beta _{2})q^{5}+(-5\beta _{1}+\cdots)q^{7}+\cdots\)
80.8.c.d 80.c 5.b $4$ $24.991$ \(\Q(i, \sqrt{31})\) None 10.8.b.a \(0\) \(0\) \(60\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2\beta _{1}-\beta _{3})q^{3}+(15+\beta _{2}+3\beta _{3})q^{5}+\cdots\)
80.8.c.e 80.c 5.b $8$ $24.991$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 40.8.c.b \(0\) \(0\) \(-744\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(-93+\beta _{1}+\beta _{3})q^{5}+(3\beta _{1}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(80, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(80, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)