Properties

Label 8.21
Level 8
Weight 21
Dimension 19
Nonzero newspaces 1
Newform subspaces 2
Sturm bound 84
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 8 = 2^{3} \)
Weight: \( k \) = \( 21 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 2 \)
Sturm bound: \(84\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{21}(\Gamma_1(8))\).

Total New Old
Modular forms 43 21 22
Cusp forms 37 19 18
Eisenstein series 6 2 4

Trace form

\( 19 q + 626 q^{2} - 2 q^{3} + 1773556 q^{4} + 25323676 q^{6} - 2031549544 q^{8} + 19758444937 q^{9} + 742754160 q^{10} - 14520628706 q^{11} - 92518091912 q^{12} - 431248136928 q^{14} + 140976757264 q^{16}+ \cdots - 34\!\cdots\!66 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{21}^{\mathrm{new}}(\Gamma_1(8))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
8.21.c \(\chi_{8}(7, \cdot)\) None 0 1
8.21.d \(\chi_{8}(3, \cdot)\) 8.21.d.a 1 1
8.21.d.b 18

Decomposition of \(S_{21}^{\mathrm{old}}(\Gamma_1(8))\) into lower level spaces

\( S_{21}^{\mathrm{old}}(\Gamma_1(8)) \cong \) \(S_{21}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)