Properties

Label 8.15
Level 8
Weight 15
Dimension 13
Nonzero newspaces 1
Newform subspaces 2
Sturm bound 60
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 8 = 2^{3} \)
Weight: \( k \) = \( 15 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 2 \)
Sturm bound: \(60\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{15}(\Gamma_1(8))\).

Total New Old
Modular forms 31 15 16
Cusp forms 25 13 12
Eisenstein series 6 2 4

Trace form

\( 13 q + 90 q^{2} - 2 q^{3} - 14444 q^{4} + 131740 q^{6} - 3194760 q^{8} + 17537551 q^{9} - 14533440 q^{10} + 10455534 q^{11} + 84432472 q^{12} + 191568384 q^{14} + 82613008 q^{16} - 58296678 q^{17} + 864073438 q^{18}+ \cdots - 55227322255558 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{15}^{\mathrm{new}}(\Gamma_1(8))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
8.15.c \(\chi_{8}(7, \cdot)\) None 0 1
8.15.d \(\chi_{8}(3, \cdot)\) 8.15.d.a 1 1
8.15.d.b 12

Decomposition of \(S_{15}^{\mathrm{old}}(\Gamma_1(8))\) into lower level spaces

\( S_{15}^{\mathrm{old}}(\Gamma_1(8)) \cong \) \(S_{15}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{15}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{15}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)