Properties

Label 795.1.x
Level $795$
Weight $1$
Character orbit 795.x
Rep. character $\chi_{795}(44,\cdot)$
Character field $\Q(\zeta_{26})$
Dimension $24$
Newform subspaces $2$
Sturm bound $108$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 795 = 3 \cdot 5 \cdot 53 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 795.x (of order \(26\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 795 \)
Character field: \(\Q(\zeta_{26})\)
Newform subspaces: \( 2 \)
Sturm bound: \(108\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(795, [\chi])\).

Total New Old
Modular forms 72 72 0
Cusp forms 24 24 0
Eisenstein series 48 48 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 24 0 0 0

Trace form

\( 24 q - 6 q^{4} - 4 q^{6} - 2 q^{9} + 22 q^{10} - 2 q^{15} - 10 q^{16} - 4 q^{19} - 8 q^{24} - 2 q^{25} - 4 q^{31} - 8 q^{34} - 6 q^{36} - 8 q^{40} - 8 q^{46} - 2 q^{49} - 4 q^{51} - 4 q^{54} - 6 q^{60}+ \cdots + 14 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(795, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
795.1.x.a 795.x 795.x $12$ $0.397$ \(\Q(\zeta_{26})\) $D_{13}$ \(\Q(\sqrt{-15}) \) None 795.1.x.a \(-2\) \(-1\) \(-1\) \(0\) \(q+(-\zeta_{26}^{7}+\zeta_{26}^{10})q^{2}+\zeta_{26}^{8}q^{3}+\cdots\)
795.1.x.b 795.x 795.x $12$ $0.397$ \(\Q(\zeta_{26})\) $D_{13}$ \(\Q(\sqrt{-15}) \) None 795.1.x.a \(2\) \(1\) \(1\) \(0\) \(q+(\zeta_{26}^{7}-\zeta_{26}^{10})q^{2}-\zeta_{26}^{8}q^{3}+(-\zeta_{26}+\cdots)q^{4}+\cdots\)