Properties

Label 79.2.g
Level $79$
Weight $2$
Character orbit 79.g
Rep. character $\chi_{79}(2,\cdot)$
Character field $\Q(\zeta_{39})$
Dimension $144$
Newform subspaces $1$
Sturm bound $13$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 79 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 79.g (of order \(39\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 79 \)
Character field: \(\Q(\zeta_{39})\)
Newform subspaces: \( 1 \)
Sturm bound: \(13\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(79, [\chi])\).

Total New Old
Modular forms 192 192 0
Cusp forms 144 144 0
Eisenstein series 48 48 0

Trace form

\( 144 q - 24 q^{2} - 26 q^{3} - 22 q^{4} - 25 q^{5} - 35 q^{6} - 26 q^{7} - 18 q^{9} - 6 q^{10} - 3 q^{11} - 16 q^{12} - 23 q^{13} + 35 q^{14} - 16 q^{15} - 18 q^{16} - 4 q^{17} + 7 q^{18} - 20 q^{19} - 50 q^{20}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(79, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
79.2.g.a 79.g 79.g $144$ $0.631$ None 79.2.g.a \(-24\) \(-26\) \(-25\) \(-26\) $\mathrm{SU}(2)[C_{39}]$