Properties

Label 780.2.z
Level $780$
Weight $2$
Character orbit 780.z
Rep. character $\chi_{780}(629,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $56$
Newform subspaces $1$
Sturm bound $336$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 780 = 2^{2} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 780.z (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 195 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(336\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(780, [\chi])\).

Total New Old
Modular forms 360 56 304
Cusp forms 312 56 256
Eisenstein series 48 0 48

Trace form

\( 56 q + 8 q^{15} - 16 q^{19} - 4 q^{21} - 16 q^{31} - 12 q^{45} - 16 q^{55} + 24 q^{61} + 56 q^{79} - 8 q^{81} - 24 q^{85} - 24 q^{91} + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(780, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
780.2.z.a 780.z 195.n $56$ $6.228$ None 780.2.z.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(780, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(780, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(390, [\chi])\)\(^{\oplus 2}\)