Defining parameters
| Level: | \( N \) | \(=\) | \( 780 = 2^{2} \cdot 3 \cdot 5 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 780.z (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 195 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(336\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(780, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 360 | 56 | 304 |
| Cusp forms | 312 | 56 | 256 |
| Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(780, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 780.2.z.a | $56$ | $6.228$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(780, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(780, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(390, [\chi])\)\(^{\oplus 2}\)