Defining parameters
| Level: | \( N \) | \(=\) | \( 770 = 2 \cdot 5 \cdot 7 \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 770.bm (of order \(30\) and degree \(8\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 77 \) |
| Character field: | \(\Q(\zeta_{30})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(288\) | ||
| Trace bound: | \(6\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(770, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1216 | 256 | 960 |
| Cusp forms | 1088 | 256 | 832 |
| Eisenstein series | 128 | 0 | 128 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(770, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 770.2.bm.a | $128$ | $6.148$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
| 770.2.bm.b | $128$ | $6.148$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(770, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(770, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(154, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(385, [\chi])\)\(^{\oplus 2}\)