Properties

Label 768.3.l
Level $768$
Weight $3$
Character orbit 768.l
Rep. character $\chi_{768}(319,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $64$
Newform subspaces $6$
Sturm bound $384$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 768.l (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 6 \)
Sturm bound: \(384\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(768, [\chi])\).

Total New Old
Modular forms 560 64 496
Cusp forms 464 64 400
Eisenstein series 96 0 96

Trace form

\( 64 q + 448 q^{49} + 384 q^{65} - 576 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(768, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
768.3.l.a 768.l 16.f $8$ $20.926$ \(\Q(\zeta_{24})\) None 768.3.l.a \(0\) \(0\) \(-16\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta_{3} q^{3}+(2\beta_{2}-2)q^{5}+(\beta_{4}-\beta_{3}+\beta_1)q^{7}+\cdots\)
768.3.l.b 768.l 16.f $8$ $20.926$ \(\Q(\zeta_{24})\) None 768.3.l.b \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta_1 q^{3}+(-\beta_{5}-\beta_{2}-1)q^{5}+\cdots\)
768.3.l.c 768.l 16.f $8$ $20.926$ \(\Q(\zeta_{24})\) None 768.3.l.b \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta_1 q^{3}+(\beta_{5}+\beta_{2}+1)q^{5}+(5\beta_{4}+2\beta_{3}-2\beta_1)q^{7}+\cdots\)
768.3.l.d 768.l 16.f $8$ $20.926$ \(\Q(\zeta_{24})\) None 768.3.l.a \(0\) \(0\) \(16\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta_1 q^{3}+(2\beta_{2}+2)q^{5}+(-\beta_{4}+\beta_{3}-\beta_1)q^{7}+\cdots\)
768.3.l.e 768.l 16.f $16$ $20.926$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 768.3.l.e \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{8}q^{3}+(-1+\beta _{10})q^{5}+(-2\beta _{7}+\cdots)q^{7}+\cdots\)
768.3.l.f 768.l 16.f $16$ $20.926$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 768.3.l.e \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{7}q^{3}+(1+\beta _{1}-\beta _{6})q^{5}+(2\beta _{7}+2\beta _{8}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(768, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(768, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(256, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(384, [\chi])\)\(^{\oplus 2}\)