Properties

Label 765.2.cr
Level $765$
Weight $2$
Character orbit 765.cr
Rep. character $\chi_{765}(14,\cdot)$
Character field $\Q(\zeta_{48})$
Dimension $1664$
Newform subspaces $1$
Sturm bound $216$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.cr (of order \(48\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 765 \)
Character field: \(\Q(\zeta_{48})\)
Newform subspaces: \( 1 \)
Sturm bound: \(216\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(765, [\chi])\).

Total New Old
Modular forms 1792 1792 0
Cusp forms 1664 1664 0
Eisenstein series 128 128 0

Trace form

\( 1664 q - 16 q^{4} - 24 q^{5} - 32 q^{6} - 32 q^{9} - 32 q^{10} - 48 q^{11} - 48 q^{14} - 40 q^{15} - 64 q^{19} - 24 q^{20} - 128 q^{21} - 32 q^{24} - 8 q^{25} - 48 q^{29} - 16 q^{30} - 16 q^{31} + 32 q^{34}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(765, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
765.2.cr.a 765.cr 765.br $1664$ $6.109$ None 765.2.cr.a \(0\) \(0\) \(-24\) \(0\) $\mathrm{SU}(2)[C_{48}]$