Properties

Label 7595.2.a.bf.1.7
Level $7595$
Weight $2$
Character 7595.1
Self dual yes
Analytic conductor $60.646$
Analytic rank $1$
Dimension $21$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7595,2,Mod(1,7595)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7595, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7595.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7595 = 5 \cdot 7^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7595.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.6463803352\)
Analytic rank: \(1\)
Dimension: \(21\)
Twist minimal: no (minimal twist has level 1085)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Character \(\chi\) \(=\) 7595.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.54789 q^{2} -2.28009 q^{3} +0.395964 q^{4} +1.00000 q^{5} +3.52934 q^{6} +2.48287 q^{8} +2.19883 q^{9} +O(q^{10})\) \(q-1.54789 q^{2} -2.28009 q^{3} +0.395964 q^{4} +1.00000 q^{5} +3.52934 q^{6} +2.48287 q^{8} +2.19883 q^{9} -1.54789 q^{10} +5.50582 q^{11} -0.902836 q^{12} -3.50098 q^{13} -2.28009 q^{15} -4.63514 q^{16} -2.26269 q^{17} -3.40355 q^{18} +0.659063 q^{19} +0.395964 q^{20} -8.52240 q^{22} +5.48680 q^{23} -5.66118 q^{24} +1.00000 q^{25} +5.41914 q^{26} +1.82674 q^{27} +1.83732 q^{29} +3.52934 q^{30} -1.00000 q^{31} +2.20895 q^{32} -12.5538 q^{33} +3.50240 q^{34} +0.870658 q^{36} +9.39924 q^{37} -1.02016 q^{38} +7.98257 q^{39} +2.48287 q^{40} -6.10653 q^{41} -7.49359 q^{43} +2.18011 q^{44} +2.19883 q^{45} -8.49296 q^{46} -3.21110 q^{47} +10.5686 q^{48} -1.54789 q^{50} +5.15915 q^{51} -1.38626 q^{52} +0.151524 q^{53} -2.82760 q^{54} +5.50582 q^{55} -1.50273 q^{57} -2.84397 q^{58} -11.2937 q^{59} -0.902836 q^{60} +14.4743 q^{61} +1.54789 q^{62} +5.85108 q^{64} -3.50098 q^{65} +19.4319 q^{66} -12.4795 q^{67} -0.895945 q^{68} -12.5104 q^{69} -6.50108 q^{71} +5.45941 q^{72} -13.5553 q^{73} -14.5490 q^{74} -2.28009 q^{75} +0.260965 q^{76} -12.3561 q^{78} +6.97785 q^{79} -4.63514 q^{80} -10.7616 q^{81} +9.45223 q^{82} -16.8665 q^{83} -2.26269 q^{85} +11.5992 q^{86} -4.18926 q^{87} +13.6702 q^{88} +9.48335 q^{89} -3.40355 q^{90} +2.17258 q^{92} +2.28009 q^{93} +4.97043 q^{94} +0.659063 q^{95} -5.03661 q^{96} -6.36860 q^{97} +12.1064 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 21 q - 4 q^{2} - 5 q^{3} + 22 q^{4} + 21 q^{5} - 6 q^{6} - 12 q^{8} + 20 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 21 q - 4 q^{2} - 5 q^{3} + 22 q^{4} + 21 q^{5} - 6 q^{6} - 12 q^{8} + 20 q^{9} - 4 q^{10} - 4 q^{11} - 21 q^{12} - 24 q^{13} - 5 q^{15} + 20 q^{16} - 18 q^{17} - 16 q^{18} - 17 q^{19} + 22 q^{20} + 9 q^{22} - 19 q^{23} - 21 q^{24} + 21 q^{25} - 16 q^{26} - 17 q^{27} - 4 q^{29} - 6 q^{30} - 21 q^{31} - 18 q^{32} - 27 q^{33} + 2 q^{34} + 52 q^{36} - 19 q^{37} + 10 q^{38} + 21 q^{39} - 12 q^{40} - 5 q^{41} - 15 q^{43} - 11 q^{44} + 20 q^{45} + 6 q^{46} - 4 q^{47} - 19 q^{48} - 4 q^{50} + 35 q^{51} - 66 q^{52} - 19 q^{53} - 11 q^{54} - 4 q^{55} - 27 q^{57} - q^{58} + q^{59} - 21 q^{60} - 60 q^{61} + 4 q^{62} - 10 q^{64} - 24 q^{65} - 64 q^{66} + 2 q^{67} - 11 q^{68} - 18 q^{69} - q^{71} - 37 q^{72} - 51 q^{73} + 11 q^{74} - 5 q^{75} - 13 q^{76} - 40 q^{78} + q^{79} + 20 q^{80} + 21 q^{81} + 2 q^{82} - 38 q^{83} - 18 q^{85} + 26 q^{86} - 32 q^{87} + 5 q^{88} - 2 q^{89} - 16 q^{90} - 86 q^{92} + 5 q^{93} - 67 q^{94} - 17 q^{95} + 56 q^{96} - 42 q^{97} - 35 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.54789 −1.09452 −0.547262 0.836961i \(-0.684330\pi\)
−0.547262 + 0.836961i \(0.684330\pi\)
\(3\) −2.28009 −1.31641 −0.658207 0.752837i \(-0.728685\pi\)
−0.658207 + 0.752837i \(0.728685\pi\)
\(4\) 0.395964 0.197982
\(5\) 1.00000 0.447214
\(6\) 3.52934 1.44085
\(7\) 0 0
\(8\) 2.48287 0.877828
\(9\) 2.19883 0.732943
\(10\) −1.54789 −0.489486
\(11\) 5.50582 1.66007 0.830033 0.557714i \(-0.188321\pi\)
0.830033 + 0.557714i \(0.188321\pi\)
\(12\) −0.902836 −0.260626
\(13\) −3.50098 −0.970998 −0.485499 0.874237i \(-0.661362\pi\)
−0.485499 + 0.874237i \(0.661362\pi\)
\(14\) 0 0
\(15\) −2.28009 −0.588718
\(16\) −4.63514 −1.15879
\(17\) −2.26269 −0.548783 −0.274392 0.961618i \(-0.588476\pi\)
−0.274392 + 0.961618i \(0.588476\pi\)
\(18\) −3.40355 −0.802224
\(19\) 0.659063 0.151199 0.0755997 0.997138i \(-0.475913\pi\)
0.0755997 + 0.997138i \(0.475913\pi\)
\(20\) 0.395964 0.0885403
\(21\) 0 0
\(22\) −8.52240 −1.81698
\(23\) 5.48680 1.14408 0.572038 0.820227i \(-0.306153\pi\)
0.572038 + 0.820227i \(0.306153\pi\)
\(24\) −5.66118 −1.15558
\(25\) 1.00000 0.200000
\(26\) 5.41914 1.06278
\(27\) 1.82674 0.351557
\(28\) 0 0
\(29\) 1.83732 0.341182 0.170591 0.985342i \(-0.445432\pi\)
0.170591 + 0.985342i \(0.445432\pi\)
\(30\) 3.52934 0.644366
\(31\) −1.00000 −0.179605
\(32\) 2.20895 0.390490
\(33\) −12.5538 −2.18533
\(34\) 3.50240 0.600656
\(35\) 0 0
\(36\) 0.870658 0.145110
\(37\) 9.39924 1.54522 0.772612 0.634878i \(-0.218950\pi\)
0.772612 + 0.634878i \(0.218950\pi\)
\(38\) −1.02016 −0.165491
\(39\) 7.98257 1.27823
\(40\) 2.48287 0.392576
\(41\) −6.10653 −0.953679 −0.476840 0.878990i \(-0.658218\pi\)
−0.476840 + 0.878990i \(0.658218\pi\)
\(42\) 0 0
\(43\) −7.49359 −1.14276 −0.571381 0.820685i \(-0.693592\pi\)
−0.571381 + 0.820685i \(0.693592\pi\)
\(44\) 2.18011 0.328663
\(45\) 2.19883 0.327782
\(46\) −8.49296 −1.25222
\(47\) −3.21110 −0.468387 −0.234193 0.972190i \(-0.575245\pi\)
−0.234193 + 0.972190i \(0.575245\pi\)
\(48\) 10.5686 1.52544
\(49\) 0 0
\(50\) −1.54789 −0.218905
\(51\) 5.15915 0.722426
\(52\) −1.38626 −0.192240
\(53\) 0.151524 0.0208134 0.0104067 0.999946i \(-0.496687\pi\)
0.0104067 + 0.999946i \(0.496687\pi\)
\(54\) −2.82760 −0.384787
\(55\) 5.50582 0.742404
\(56\) 0 0
\(57\) −1.50273 −0.199041
\(58\) −2.84397 −0.373432
\(59\) −11.2937 −1.47031 −0.735157 0.677897i \(-0.762892\pi\)
−0.735157 + 0.677897i \(0.762892\pi\)
\(60\) −0.902836 −0.116556
\(61\) 14.4743 1.85325 0.926624 0.375989i \(-0.122697\pi\)
0.926624 + 0.375989i \(0.122697\pi\)
\(62\) 1.54789 0.196582
\(63\) 0 0
\(64\) 5.85108 0.731384
\(65\) −3.50098 −0.434243
\(66\) 19.4319 2.39190
\(67\) −12.4795 −1.52461 −0.762306 0.647216i \(-0.775933\pi\)
−0.762306 + 0.647216i \(0.775933\pi\)
\(68\) −0.895945 −0.108649
\(69\) −12.5104 −1.50608
\(70\) 0 0
\(71\) −6.50108 −0.771537 −0.385768 0.922596i \(-0.626064\pi\)
−0.385768 + 0.922596i \(0.626064\pi\)
\(72\) 5.45941 0.643398
\(73\) −13.5553 −1.58653 −0.793266 0.608875i \(-0.791621\pi\)
−0.793266 + 0.608875i \(0.791621\pi\)
\(74\) −14.5490 −1.69129
\(75\) −2.28009 −0.263283
\(76\) 0.260965 0.0299348
\(77\) 0 0
\(78\) −12.3561 −1.39906
\(79\) 6.97785 0.785069 0.392535 0.919737i \(-0.371598\pi\)
0.392535 + 0.919737i \(0.371598\pi\)
\(80\) −4.63514 −0.518224
\(81\) −10.7616 −1.19574
\(82\) 9.45223 1.04382
\(83\) −16.8665 −1.85134 −0.925669 0.378336i \(-0.876497\pi\)
−0.925669 + 0.378336i \(0.876497\pi\)
\(84\) 0 0
\(85\) −2.26269 −0.245423
\(86\) 11.5992 1.25078
\(87\) −4.18926 −0.449136
\(88\) 13.6702 1.45725
\(89\) 9.48335 1.00523 0.502616 0.864510i \(-0.332371\pi\)
0.502616 + 0.864510i \(0.332371\pi\)
\(90\) −3.40355 −0.358765
\(91\) 0 0
\(92\) 2.17258 0.226507
\(93\) 2.28009 0.236435
\(94\) 4.97043 0.512660
\(95\) 0.659063 0.0676184
\(96\) −5.03661 −0.514046
\(97\) −6.36860 −0.646633 −0.323317 0.946291i \(-0.604798\pi\)
−0.323317 + 0.946291i \(0.604798\pi\)
\(98\) 0 0
\(99\) 12.1064 1.21673
\(100\) 0.395964 0.0395964
\(101\) −7.16898 −0.713340 −0.356670 0.934230i \(-0.616088\pi\)
−0.356670 + 0.934230i \(0.616088\pi\)
\(102\) −7.98580 −0.790712
\(103\) −1.60204 −0.157854 −0.0789268 0.996880i \(-0.525149\pi\)
−0.0789268 + 0.996880i \(0.525149\pi\)
\(104\) −8.69249 −0.852369
\(105\) 0 0
\(106\) −0.234542 −0.0227807
\(107\) −9.39372 −0.908125 −0.454063 0.890970i \(-0.650026\pi\)
−0.454063 + 0.890970i \(0.650026\pi\)
\(108\) 0.723325 0.0696020
\(109\) −0.658076 −0.0630323 −0.0315161 0.999503i \(-0.510034\pi\)
−0.0315161 + 0.999503i \(0.510034\pi\)
\(110\) −8.52240 −0.812579
\(111\) −21.4311 −2.03415
\(112\) 0 0
\(113\) −4.19428 −0.394565 −0.197282 0.980347i \(-0.563212\pi\)
−0.197282 + 0.980347i \(0.563212\pi\)
\(114\) 2.32605 0.217855
\(115\) 5.48680 0.511647
\(116\) 0.727513 0.0675479
\(117\) −7.69806 −0.711686
\(118\) 17.4814 1.60929
\(119\) 0 0
\(120\) −5.66118 −0.516793
\(121\) 19.3140 1.75582
\(122\) −22.4047 −2.02842
\(123\) 13.9235 1.25544
\(124\) −0.395964 −0.0355586
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 0.405614 0.0359924 0.0179962 0.999838i \(-0.494271\pi\)
0.0179962 + 0.999838i \(0.494271\pi\)
\(128\) −13.4747 −1.19101
\(129\) 17.0861 1.50435
\(130\) 5.41914 0.475290
\(131\) 15.3228 1.33876 0.669378 0.742922i \(-0.266561\pi\)
0.669378 + 0.742922i \(0.266561\pi\)
\(132\) −4.97085 −0.432657
\(133\) 0 0
\(134\) 19.3169 1.66872
\(135\) 1.82674 0.157221
\(136\) −5.61797 −0.481737
\(137\) 6.25650 0.534529 0.267264 0.963623i \(-0.413880\pi\)
0.267264 + 0.963623i \(0.413880\pi\)
\(138\) 19.3648 1.64844
\(139\) 16.9729 1.43962 0.719810 0.694172i \(-0.244229\pi\)
0.719810 + 0.694172i \(0.244229\pi\)
\(140\) 0 0
\(141\) 7.32161 0.616591
\(142\) 10.0630 0.844465
\(143\) −19.2758 −1.61192
\(144\) −10.1919 −0.849324
\(145\) 1.83732 0.152581
\(146\) 20.9822 1.73650
\(147\) 0 0
\(148\) 3.72176 0.305927
\(149\) −9.73968 −0.797905 −0.398953 0.916972i \(-0.630626\pi\)
−0.398953 + 0.916972i \(0.630626\pi\)
\(150\) 3.52934 0.288169
\(151\) −11.5032 −0.936117 −0.468058 0.883698i \(-0.655046\pi\)
−0.468058 + 0.883698i \(0.655046\pi\)
\(152\) 1.63637 0.132727
\(153\) −4.97527 −0.402227
\(154\) 0 0
\(155\) −1.00000 −0.0803219
\(156\) 3.16081 0.253067
\(157\) 13.4330 1.07207 0.536035 0.844196i \(-0.319921\pi\)
0.536035 + 0.844196i \(0.319921\pi\)
\(158\) −10.8009 −0.859277
\(159\) −0.345488 −0.0273990
\(160\) 2.20895 0.174633
\(161\) 0 0
\(162\) 16.6578 1.30876
\(163\) −21.0713 −1.65043 −0.825217 0.564816i \(-0.808947\pi\)
−0.825217 + 0.564816i \(0.808947\pi\)
\(164\) −2.41797 −0.188811
\(165\) −12.5538 −0.977311
\(166\) 26.1075 2.02633
\(167\) 3.45837 0.267617 0.133808 0.991007i \(-0.457279\pi\)
0.133808 + 0.991007i \(0.457279\pi\)
\(168\) 0 0
\(169\) −0.743122 −0.0571632
\(170\) 3.50240 0.268622
\(171\) 1.44917 0.110821
\(172\) −2.96719 −0.226246
\(173\) −3.36388 −0.255751 −0.127875 0.991790i \(-0.540816\pi\)
−0.127875 + 0.991790i \(0.540816\pi\)
\(174\) 6.48452 0.491590
\(175\) 0 0
\(176\) −25.5202 −1.92366
\(177\) 25.7507 1.93554
\(178\) −14.6792 −1.10025
\(179\) 16.4073 1.22634 0.613169 0.789952i \(-0.289894\pi\)
0.613169 + 0.789952i \(0.289894\pi\)
\(180\) 0.870658 0.0648950
\(181\) 1.97277 0.146635 0.0733175 0.997309i \(-0.476641\pi\)
0.0733175 + 0.997309i \(0.476641\pi\)
\(182\) 0 0
\(183\) −33.0028 −2.43964
\(184\) 13.6230 1.00430
\(185\) 9.39924 0.691046
\(186\) −3.52934 −0.258783
\(187\) −12.4580 −0.911017
\(188\) −1.27148 −0.0927322
\(189\) 0 0
\(190\) −1.02016 −0.0740100
\(191\) −7.14928 −0.517304 −0.258652 0.965971i \(-0.583278\pi\)
−0.258652 + 0.965971i \(0.583278\pi\)
\(192\) −13.3410 −0.962804
\(193\) 20.6879 1.48915 0.744575 0.667539i \(-0.232652\pi\)
0.744575 + 0.667539i \(0.232652\pi\)
\(194\) 9.85789 0.707755
\(195\) 7.98257 0.571644
\(196\) 0 0
\(197\) 11.6752 0.831826 0.415913 0.909404i \(-0.363462\pi\)
0.415913 + 0.909404i \(0.363462\pi\)
\(198\) −18.7393 −1.33174
\(199\) 3.79354 0.268917 0.134459 0.990919i \(-0.457070\pi\)
0.134459 + 0.990919i \(0.457070\pi\)
\(200\) 2.48287 0.175566
\(201\) 28.4544 2.00702
\(202\) 11.0968 0.780768
\(203\) 0 0
\(204\) 2.04284 0.143027
\(205\) −6.10653 −0.426498
\(206\) 2.47978 0.172774
\(207\) 12.0645 0.838543
\(208\) 16.2275 1.12518
\(209\) 3.62868 0.251001
\(210\) 0 0
\(211\) 16.7321 1.15189 0.575943 0.817490i \(-0.304635\pi\)
0.575943 + 0.817490i \(0.304635\pi\)
\(212\) 0.0599980 0.00412068
\(213\) 14.8231 1.01566
\(214\) 14.5405 0.993965
\(215\) −7.49359 −0.511058
\(216\) 4.53557 0.308606
\(217\) 0 0
\(218\) 1.01863 0.0689903
\(219\) 30.9074 2.08853
\(220\) 2.18011 0.146983
\(221\) 7.92164 0.532867
\(222\) 33.1731 2.22643
\(223\) 17.7759 1.19036 0.595181 0.803592i \(-0.297080\pi\)
0.595181 + 0.803592i \(0.297080\pi\)
\(224\) 0 0
\(225\) 2.19883 0.146589
\(226\) 6.49228 0.431860
\(227\) 17.3484 1.15145 0.575727 0.817642i \(-0.304719\pi\)
0.575727 + 0.817642i \(0.304719\pi\)
\(228\) −0.595025 −0.0394065
\(229\) −17.0933 −1.12956 −0.564779 0.825242i \(-0.691039\pi\)
−0.564779 + 0.825242i \(0.691039\pi\)
\(230\) −8.49296 −0.560009
\(231\) 0 0
\(232\) 4.56183 0.299499
\(233\) −29.5448 −1.93555 −0.967773 0.251823i \(-0.918970\pi\)
−0.967773 + 0.251823i \(0.918970\pi\)
\(234\) 11.9158 0.778958
\(235\) −3.21110 −0.209469
\(236\) −4.47190 −0.291096
\(237\) −15.9102 −1.03348
\(238\) 0 0
\(239\) 3.51114 0.227117 0.113559 0.993531i \(-0.463775\pi\)
0.113559 + 0.993531i \(0.463775\pi\)
\(240\) 10.5686 0.682197
\(241\) −14.2799 −0.919850 −0.459925 0.887958i \(-0.652124\pi\)
−0.459925 + 0.887958i \(0.652124\pi\)
\(242\) −29.8960 −1.92179
\(243\) 19.0573 1.22253
\(244\) 5.73132 0.366910
\(245\) 0 0
\(246\) −21.5520 −1.37410
\(247\) −2.30737 −0.146814
\(248\) −2.48287 −0.157662
\(249\) 38.4572 2.43712
\(250\) −1.54789 −0.0978972
\(251\) −16.5619 −1.04538 −0.522690 0.852523i \(-0.675072\pi\)
−0.522690 + 0.852523i \(0.675072\pi\)
\(252\) 0 0
\(253\) 30.2093 1.89924
\(254\) −0.627845 −0.0393945
\(255\) 5.15915 0.323079
\(256\) 9.15523 0.572202
\(257\) 4.47848 0.279360 0.139680 0.990197i \(-0.455393\pi\)
0.139680 + 0.990197i \(0.455393\pi\)
\(258\) −26.4474 −1.64654
\(259\) 0 0
\(260\) −1.38626 −0.0859724
\(261\) 4.03995 0.250067
\(262\) −23.7179 −1.46530
\(263\) −9.86910 −0.608555 −0.304277 0.952583i \(-0.598415\pi\)
−0.304277 + 0.952583i \(0.598415\pi\)
\(264\) −31.1694 −1.91835
\(265\) 0.151524 0.00930803
\(266\) 0 0
\(267\) −21.6229 −1.32330
\(268\) −4.94143 −0.301846
\(269\) 8.50542 0.518585 0.259292 0.965799i \(-0.416511\pi\)
0.259292 + 0.965799i \(0.416511\pi\)
\(270\) −2.82760 −0.172082
\(271\) 31.9230 1.93918 0.969592 0.244725i \(-0.0786978\pi\)
0.969592 + 0.244725i \(0.0786978\pi\)
\(272\) 10.4879 0.635922
\(273\) 0 0
\(274\) −9.68438 −0.585055
\(275\) 5.50582 0.332013
\(276\) −4.95368 −0.298176
\(277\) 21.3962 1.28557 0.642787 0.766045i \(-0.277778\pi\)
0.642787 + 0.766045i \(0.277778\pi\)
\(278\) −26.2721 −1.57570
\(279\) −2.19883 −0.131640
\(280\) 0 0
\(281\) −2.06621 −0.123260 −0.0616298 0.998099i \(-0.519630\pi\)
−0.0616298 + 0.998099i \(0.519630\pi\)
\(282\) −11.3330 −0.674873
\(283\) −8.79967 −0.523086 −0.261543 0.965192i \(-0.584231\pi\)
−0.261543 + 0.965192i \(0.584231\pi\)
\(284\) −2.57420 −0.152750
\(285\) −1.50273 −0.0890138
\(286\) 29.8368 1.76429
\(287\) 0 0
\(288\) 4.85710 0.286207
\(289\) −11.8802 −0.698837
\(290\) −2.84397 −0.167004
\(291\) 14.5210 0.851236
\(292\) −5.36743 −0.314105
\(293\) −16.4137 −0.958899 −0.479450 0.877569i \(-0.659164\pi\)
−0.479450 + 0.877569i \(0.659164\pi\)
\(294\) 0 0
\(295\) −11.2937 −0.657544
\(296\) 23.3371 1.35644
\(297\) 10.0577 0.583608
\(298\) 15.0759 0.873326
\(299\) −19.2092 −1.11090
\(300\) −0.902836 −0.0521252
\(301\) 0 0
\(302\) 17.8057 1.02460
\(303\) 16.3459 0.939050
\(304\) −3.05485 −0.175208
\(305\) 14.4743 0.828798
\(306\) 7.70118 0.440247
\(307\) 4.85418 0.277042 0.138521 0.990359i \(-0.455765\pi\)
0.138521 + 0.990359i \(0.455765\pi\)
\(308\) 0 0
\(309\) 3.65280 0.207800
\(310\) 1.54789 0.0879143
\(311\) 18.8152 1.06691 0.533455 0.845829i \(-0.320893\pi\)
0.533455 + 0.845829i \(0.320893\pi\)
\(312\) 19.8197 1.12207
\(313\) −25.2101 −1.42496 −0.712479 0.701694i \(-0.752427\pi\)
−0.712479 + 0.701694i \(0.752427\pi\)
\(314\) −20.7928 −1.17341
\(315\) 0 0
\(316\) 2.76298 0.155430
\(317\) 24.1699 1.35751 0.678757 0.734363i \(-0.262519\pi\)
0.678757 + 0.734363i \(0.262519\pi\)
\(318\) 0.534778 0.0299889
\(319\) 10.1160 0.566385
\(320\) 5.85108 0.327085
\(321\) 21.4186 1.19547
\(322\) 0 0
\(323\) −1.49126 −0.0829757
\(324\) −4.26122 −0.236735
\(325\) −3.50098 −0.194200
\(326\) 32.6161 1.80644
\(327\) 1.50048 0.0829765
\(328\) −15.1617 −0.837166
\(329\) 0 0
\(330\) 19.4319 1.06969
\(331\) −7.55808 −0.415430 −0.207715 0.978189i \(-0.566603\pi\)
−0.207715 + 0.978189i \(0.566603\pi\)
\(332\) −6.67852 −0.366532
\(333\) 20.6673 1.13256
\(334\) −5.35317 −0.292913
\(335\) −12.4795 −0.681827
\(336\) 0 0
\(337\) −19.4435 −1.05916 −0.529578 0.848261i \(-0.677650\pi\)
−0.529578 + 0.848261i \(0.677650\pi\)
\(338\) 1.15027 0.0625665
\(339\) 9.56335 0.519410
\(340\) −0.895945 −0.0485894
\(341\) −5.50582 −0.298157
\(342\) −2.24315 −0.121296
\(343\) 0 0
\(344\) −18.6056 −1.00315
\(345\) −12.5104 −0.673538
\(346\) 5.20691 0.279925
\(347\) −17.0339 −0.914429 −0.457215 0.889356i \(-0.651153\pi\)
−0.457215 + 0.889356i \(0.651153\pi\)
\(348\) −1.65880 −0.0889209
\(349\) −34.4438 −1.84374 −0.921868 0.387503i \(-0.873338\pi\)
−0.921868 + 0.387503i \(0.873338\pi\)
\(350\) 0 0
\(351\) −6.39540 −0.341361
\(352\) 12.1621 0.648240
\(353\) −19.1989 −1.02186 −0.510928 0.859624i \(-0.670698\pi\)
−0.510928 + 0.859624i \(0.670698\pi\)
\(354\) −39.8592 −2.11849
\(355\) −6.50108 −0.345042
\(356\) 3.75507 0.199018
\(357\) 0 0
\(358\) −25.3967 −1.34226
\(359\) 22.4418 1.18443 0.592216 0.805779i \(-0.298253\pi\)
0.592216 + 0.805779i \(0.298253\pi\)
\(360\) 5.45941 0.287736
\(361\) −18.5656 −0.977139
\(362\) −3.05364 −0.160496
\(363\) −44.0378 −2.31139
\(364\) 0 0
\(365\) −13.5553 −0.709519
\(366\) 51.0848 2.67024
\(367\) −10.5900 −0.552795 −0.276397 0.961043i \(-0.589141\pi\)
−0.276397 + 0.961043i \(0.589141\pi\)
\(368\) −25.4321 −1.32574
\(369\) −13.4272 −0.698993
\(370\) −14.5490 −0.756366
\(371\) 0 0
\(372\) 0.902836 0.0468098
\(373\) 34.9117 1.80766 0.903828 0.427895i \(-0.140745\pi\)
0.903828 + 0.427895i \(0.140745\pi\)
\(374\) 19.2836 0.997130
\(375\) −2.28009 −0.117744
\(376\) −7.97274 −0.411163
\(377\) −6.43243 −0.331287
\(378\) 0 0
\(379\) 26.8982 1.38167 0.690834 0.723014i \(-0.257244\pi\)
0.690834 + 0.723014i \(0.257244\pi\)
\(380\) 0.260965 0.0133872
\(381\) −0.924837 −0.0473809
\(382\) 11.0663 0.566201
\(383\) −13.6362 −0.696775 −0.348388 0.937351i \(-0.613271\pi\)
−0.348388 + 0.937351i \(0.613271\pi\)
\(384\) 30.7236 1.56786
\(385\) 0 0
\(386\) −32.0226 −1.62991
\(387\) −16.4771 −0.837579
\(388\) −2.52174 −0.128022
\(389\) −23.1711 −1.17482 −0.587409 0.809290i \(-0.699852\pi\)
−0.587409 + 0.809290i \(0.699852\pi\)
\(390\) −12.3561 −0.625678
\(391\) −12.4149 −0.627850
\(392\) 0 0
\(393\) −34.9373 −1.76236
\(394\) −18.0720 −0.910454
\(395\) 6.97785 0.351094
\(396\) 4.79368 0.240892
\(397\) −10.0484 −0.504315 −0.252158 0.967686i \(-0.581140\pi\)
−0.252158 + 0.967686i \(0.581140\pi\)
\(398\) −5.87199 −0.294336
\(399\) 0 0
\(400\) −4.63514 −0.231757
\(401\) 9.20785 0.459818 0.229909 0.973212i \(-0.426157\pi\)
0.229909 + 0.973212i \(0.426157\pi\)
\(402\) −44.0443 −2.19673
\(403\) 3.50098 0.174396
\(404\) −2.83866 −0.141229
\(405\) −10.7616 −0.534750
\(406\) 0 0
\(407\) 51.7505 2.56518
\(408\) 12.8095 0.634165
\(409\) −24.9030 −1.23137 −0.615687 0.787991i \(-0.711121\pi\)
−0.615687 + 0.787991i \(0.711121\pi\)
\(410\) 9.45223 0.466812
\(411\) −14.2654 −0.703661
\(412\) −0.634350 −0.0312522
\(413\) 0 0
\(414\) −18.6746 −0.917806
\(415\) −16.8665 −0.827943
\(416\) −7.73348 −0.379165
\(417\) −38.6997 −1.89513
\(418\) −5.61680 −0.274727
\(419\) −15.0451 −0.735003 −0.367501 0.930023i \(-0.619787\pi\)
−0.367501 + 0.930023i \(0.619787\pi\)
\(420\) 0 0
\(421\) −14.3659 −0.700149 −0.350074 0.936722i \(-0.613844\pi\)
−0.350074 + 0.936722i \(0.613844\pi\)
\(422\) −25.8995 −1.26077
\(423\) −7.06066 −0.343301
\(424\) 0.376214 0.0182706
\(425\) −2.26269 −0.109757
\(426\) −22.9445 −1.11166
\(427\) 0 0
\(428\) −3.71958 −0.179793
\(429\) 43.9506 2.12195
\(430\) 11.5992 0.559365
\(431\) 6.25088 0.301094 0.150547 0.988603i \(-0.451896\pi\)
0.150547 + 0.988603i \(0.451896\pi\)
\(432\) −8.46721 −0.407379
\(433\) −18.4479 −0.886548 −0.443274 0.896386i \(-0.646183\pi\)
−0.443274 + 0.896386i \(0.646183\pi\)
\(434\) 0 0
\(435\) −4.18926 −0.200860
\(436\) −0.260575 −0.0124793
\(437\) 3.61615 0.172984
\(438\) −47.8413 −2.28595
\(439\) −30.2391 −1.44323 −0.721617 0.692293i \(-0.756601\pi\)
−0.721617 + 0.692293i \(0.756601\pi\)
\(440\) 13.6702 0.651703
\(441\) 0 0
\(442\) −12.2618 −0.583236
\(443\) −13.1992 −0.627115 −0.313557 0.949569i \(-0.601521\pi\)
−0.313557 + 0.949569i \(0.601521\pi\)
\(444\) −8.48596 −0.402726
\(445\) 9.48335 0.449554
\(446\) −27.5151 −1.30288
\(447\) 22.2074 1.05037
\(448\) 0 0
\(449\) 22.3159 1.05315 0.526577 0.850128i \(-0.323475\pi\)
0.526577 + 0.850128i \(0.323475\pi\)
\(450\) −3.40355 −0.160445
\(451\) −33.6214 −1.58317
\(452\) −1.66078 −0.0781167
\(453\) 26.2284 1.23232
\(454\) −26.8534 −1.26029
\(455\) 0 0
\(456\) −3.73107 −0.174724
\(457\) −26.9409 −1.26024 −0.630120 0.776498i \(-0.716994\pi\)
−0.630120 + 0.776498i \(0.716994\pi\)
\(458\) 26.4586 1.23633
\(459\) −4.13336 −0.192929
\(460\) 2.17258 0.101297
\(461\) 17.8260 0.830238 0.415119 0.909767i \(-0.363740\pi\)
0.415119 + 0.909767i \(0.363740\pi\)
\(462\) 0 0
\(463\) 37.4269 1.73938 0.869688 0.493601i \(-0.164320\pi\)
0.869688 + 0.493601i \(0.164320\pi\)
\(464\) −8.51624 −0.395356
\(465\) 2.28009 0.105737
\(466\) 45.7322 2.11850
\(467\) −19.0936 −0.883544 −0.441772 0.897127i \(-0.645650\pi\)
−0.441772 + 0.897127i \(0.645650\pi\)
\(468\) −3.04816 −0.140901
\(469\) 0 0
\(470\) 4.97043 0.229269
\(471\) −30.6285 −1.41129
\(472\) −28.0408 −1.29068
\(473\) −41.2583 −1.89706
\(474\) 24.6272 1.13116
\(475\) 0.659063 0.0302399
\(476\) 0 0
\(477\) 0.333175 0.0152550
\(478\) −5.43487 −0.248585
\(479\) 18.0382 0.824186 0.412093 0.911142i \(-0.364798\pi\)
0.412093 + 0.911142i \(0.364798\pi\)
\(480\) −5.03661 −0.229889
\(481\) −32.9066 −1.50041
\(482\) 22.1037 1.00680
\(483\) 0 0
\(484\) 7.64766 0.347621
\(485\) −6.36860 −0.289183
\(486\) −29.4986 −1.33809
\(487\) −5.28354 −0.239420 −0.119710 0.992809i \(-0.538196\pi\)
−0.119710 + 0.992809i \(0.538196\pi\)
\(488\) 35.9379 1.62683
\(489\) 48.0446 2.17265
\(490\) 0 0
\(491\) 19.9966 0.902436 0.451218 0.892414i \(-0.350990\pi\)
0.451218 + 0.892414i \(0.350990\pi\)
\(492\) 5.51319 0.248554
\(493\) −4.15729 −0.187235
\(494\) 3.57155 0.160692
\(495\) 12.1064 0.544140
\(496\) 4.63514 0.208124
\(497\) 0 0
\(498\) −59.5275 −2.66749
\(499\) 1.66707 0.0746281 0.0373140 0.999304i \(-0.488120\pi\)
0.0373140 + 0.999304i \(0.488120\pi\)
\(500\) 0.395964 0.0177081
\(501\) −7.88540 −0.352294
\(502\) 25.6361 1.14419
\(503\) −7.35046 −0.327741 −0.163870 0.986482i \(-0.552398\pi\)
−0.163870 + 0.986482i \(0.552398\pi\)
\(504\) 0 0
\(505\) −7.16898 −0.319015
\(506\) −46.7607 −2.07877
\(507\) 1.69439 0.0752504
\(508\) 0.160608 0.00712585
\(509\) 26.3271 1.16693 0.583463 0.812139i \(-0.301697\pi\)
0.583463 + 0.812139i \(0.301697\pi\)
\(510\) −7.98580 −0.353617
\(511\) 0 0
\(512\) 12.7781 0.564719
\(513\) 1.20394 0.0531552
\(514\) −6.93219 −0.305766
\(515\) −1.60204 −0.0705942
\(516\) 6.76548 0.297833
\(517\) −17.6797 −0.777553
\(518\) 0 0
\(519\) 7.66996 0.336674
\(520\) −8.69249 −0.381191
\(521\) 1.18497 0.0519143 0.0259572 0.999663i \(-0.491737\pi\)
0.0259572 + 0.999663i \(0.491737\pi\)
\(522\) −6.25341 −0.273704
\(523\) 27.3332 1.19520 0.597600 0.801795i \(-0.296121\pi\)
0.597600 + 0.801795i \(0.296121\pi\)
\(524\) 6.06726 0.265050
\(525\) 0 0
\(526\) 15.2763 0.666078
\(527\) 2.26269 0.0985644
\(528\) 58.1886 2.53233
\(529\) 7.10497 0.308912
\(530\) −0.234542 −0.0101879
\(531\) −24.8329 −1.07766
\(532\) 0 0
\(533\) 21.3788 0.926020
\(534\) 33.4699 1.44838
\(535\) −9.39372 −0.406126
\(536\) −30.9850 −1.33835
\(537\) −37.4102 −1.61437
\(538\) −13.1655 −0.567603
\(539\) 0 0
\(540\) 0.723325 0.0311270
\(541\) 12.1877 0.523988 0.261994 0.965069i \(-0.415620\pi\)
0.261994 + 0.965069i \(0.415620\pi\)
\(542\) −49.4133 −2.12248
\(543\) −4.49811 −0.193032
\(544\) −4.99816 −0.214295
\(545\) −0.658076 −0.0281889
\(546\) 0 0
\(547\) −4.44981 −0.190260 −0.0951300 0.995465i \(-0.530327\pi\)
−0.0951300 + 0.995465i \(0.530327\pi\)
\(548\) 2.47735 0.105827
\(549\) 31.8266 1.35833
\(550\) −8.52240 −0.363396
\(551\) 1.21091 0.0515865
\(552\) −31.0618 −1.32208
\(553\) 0 0
\(554\) −33.1190 −1.40709
\(555\) −21.4311 −0.909701
\(556\) 6.72064 0.285019
\(557\) −25.0794 −1.06265 −0.531324 0.847169i \(-0.678305\pi\)
−0.531324 + 0.847169i \(0.678305\pi\)
\(558\) 3.40355 0.144084
\(559\) 26.2349 1.10962
\(560\) 0 0
\(561\) 28.4053 1.19927
\(562\) 3.19826 0.134911
\(563\) 3.24479 0.136751 0.0683757 0.997660i \(-0.478218\pi\)
0.0683757 + 0.997660i \(0.478218\pi\)
\(564\) 2.89909 0.122074
\(565\) −4.19428 −0.176455
\(566\) 13.6209 0.572530
\(567\) 0 0
\(568\) −16.1414 −0.677276
\(569\) −29.0240 −1.21675 −0.608376 0.793649i \(-0.708179\pi\)
−0.608376 + 0.793649i \(0.708179\pi\)
\(570\) 2.32605 0.0974277
\(571\) −26.9001 −1.12574 −0.562868 0.826547i \(-0.690302\pi\)
−0.562868 + 0.826547i \(0.690302\pi\)
\(572\) −7.63251 −0.319131
\(573\) 16.3010 0.680986
\(574\) 0 0
\(575\) 5.48680 0.228815
\(576\) 12.8655 0.536063
\(577\) 22.3390 0.929983 0.464992 0.885315i \(-0.346057\pi\)
0.464992 + 0.885315i \(0.346057\pi\)
\(578\) 18.3893 0.764893
\(579\) −47.1704 −1.96034
\(580\) 0.727513 0.0302083
\(581\) 0 0
\(582\) −22.4769 −0.931698
\(583\) 0.834262 0.0345516
\(584\) −33.6562 −1.39270
\(585\) −7.69806 −0.318276
\(586\) 25.4066 1.04954
\(587\) 9.67462 0.399314 0.199657 0.979866i \(-0.436017\pi\)
0.199657 + 0.979866i \(0.436017\pi\)
\(588\) 0 0
\(589\) −0.659063 −0.0271562
\(590\) 17.4814 0.719698
\(591\) −26.6207 −1.09503
\(592\) −43.5668 −1.79058
\(593\) −38.8741 −1.59637 −0.798185 0.602413i \(-0.794206\pi\)
−0.798185 + 0.602413i \(0.794206\pi\)
\(594\) −15.5682 −0.638773
\(595\) 0 0
\(596\) −3.85656 −0.157971
\(597\) −8.64963 −0.354006
\(598\) 29.7337 1.21590
\(599\) 18.6962 0.763905 0.381953 0.924182i \(-0.375252\pi\)
0.381953 + 0.924182i \(0.375252\pi\)
\(600\) −5.66118 −0.231117
\(601\) 12.6018 0.514038 0.257019 0.966406i \(-0.417260\pi\)
0.257019 + 0.966406i \(0.417260\pi\)
\(602\) 0 0
\(603\) −27.4403 −1.11745
\(604\) −4.55485 −0.185334
\(605\) 19.3140 0.785227
\(606\) −25.3017 −1.02781
\(607\) 17.5302 0.711528 0.355764 0.934576i \(-0.384221\pi\)
0.355764 + 0.934576i \(0.384221\pi\)
\(608\) 1.45583 0.0590419
\(609\) 0 0
\(610\) −22.4047 −0.907139
\(611\) 11.2420 0.454803
\(612\) −1.97003 −0.0796337
\(613\) 12.7131 0.513475 0.256738 0.966481i \(-0.417352\pi\)
0.256738 + 0.966481i \(0.417352\pi\)
\(614\) −7.51373 −0.303230
\(615\) 13.9235 0.561448
\(616\) 0 0
\(617\) 14.5406 0.585382 0.292691 0.956207i \(-0.405449\pi\)
0.292691 + 0.956207i \(0.405449\pi\)
\(618\) −5.65413 −0.227442
\(619\) −22.0186 −0.885002 −0.442501 0.896768i \(-0.645909\pi\)
−0.442501 + 0.896768i \(0.645909\pi\)
\(620\) −0.395964 −0.0159023
\(621\) 10.0230 0.402208
\(622\) −29.1238 −1.16776
\(623\) 0 0
\(624\) −37.0003 −1.48120
\(625\) 1.00000 0.0400000
\(626\) 39.0224 1.55965
\(627\) −8.27373 −0.330421
\(628\) 5.31899 0.212251
\(629\) −21.2676 −0.847994
\(630\) 0 0
\(631\) −25.2853 −1.00659 −0.503296 0.864114i \(-0.667879\pi\)
−0.503296 + 0.864114i \(0.667879\pi\)
\(632\) 17.3251 0.689156
\(633\) −38.1508 −1.51636
\(634\) −37.4123 −1.48583
\(635\) 0.405614 0.0160963
\(636\) −0.136801 −0.00542451
\(637\) 0 0
\(638\) −15.6584 −0.619921
\(639\) −14.2948 −0.565493
\(640\) −13.4747 −0.532635
\(641\) 5.83623 0.230517 0.115259 0.993336i \(-0.463230\pi\)
0.115259 + 0.993336i \(0.463230\pi\)
\(642\) −33.1536 −1.30847
\(643\) −20.5722 −0.811290 −0.405645 0.914031i \(-0.632953\pi\)
−0.405645 + 0.914031i \(0.632953\pi\)
\(644\) 0 0
\(645\) 17.0861 0.672764
\(646\) 2.30830 0.0908189
\(647\) −8.15128 −0.320460 −0.160230 0.987080i \(-0.551224\pi\)
−0.160230 + 0.987080i \(0.551224\pi\)
\(648\) −26.7198 −1.04965
\(649\) −62.1810 −2.44082
\(650\) 5.41914 0.212556
\(651\) 0 0
\(652\) −8.34349 −0.326756
\(653\) 18.6713 0.730663 0.365331 0.930877i \(-0.380956\pi\)
0.365331 + 0.930877i \(0.380956\pi\)
\(654\) −2.32257 −0.0908197
\(655\) 15.3228 0.598710
\(656\) 28.3046 1.10511
\(657\) −29.8059 −1.16284
\(658\) 0 0
\(659\) −3.83437 −0.149366 −0.0746829 0.997207i \(-0.523794\pi\)
−0.0746829 + 0.997207i \(0.523794\pi\)
\(660\) −4.97085 −0.193490
\(661\) 15.0005 0.583452 0.291726 0.956502i \(-0.405770\pi\)
0.291726 + 0.956502i \(0.405770\pi\)
\(662\) 11.6991 0.454698
\(663\) −18.0621 −0.701474
\(664\) −41.8773 −1.62515
\(665\) 0 0
\(666\) −31.9907 −1.23962
\(667\) 10.0810 0.390338
\(668\) 1.36939 0.0529833
\(669\) −40.5307 −1.56701
\(670\) 19.3169 0.746276
\(671\) 79.6930 3.07652
\(672\) 0 0
\(673\) −40.9619 −1.57897 −0.789483 0.613772i \(-0.789651\pi\)
−0.789483 + 0.613772i \(0.789651\pi\)
\(674\) 30.0965 1.15927
\(675\) 1.82674 0.0703114
\(676\) −0.294249 −0.0113173
\(677\) −17.6883 −0.679817 −0.339909 0.940458i \(-0.610396\pi\)
−0.339909 + 0.940458i \(0.610396\pi\)
\(678\) −14.8030 −0.568507
\(679\) 0 0
\(680\) −5.61797 −0.215439
\(681\) −39.5560 −1.51579
\(682\) 8.52240 0.326340
\(683\) −23.2639 −0.890168 −0.445084 0.895489i \(-0.646826\pi\)
−0.445084 + 0.895489i \(0.646826\pi\)
\(684\) 0.573818 0.0219405
\(685\) 6.25650 0.239049
\(686\) 0 0
\(687\) 38.9744 1.48696
\(688\) 34.7338 1.32421
\(689\) −0.530482 −0.0202098
\(690\) 19.3648 0.737204
\(691\) −6.05267 −0.230254 −0.115127 0.993351i \(-0.536728\pi\)
−0.115127 + 0.993351i \(0.536728\pi\)
\(692\) −1.33197 −0.0506341
\(693\) 0 0
\(694\) 26.3666 1.00086
\(695\) 16.9729 0.643817
\(696\) −10.4014 −0.394264
\(697\) 13.8172 0.523363
\(698\) 53.3153 2.01801
\(699\) 67.3650 2.54798
\(700\) 0 0
\(701\) −7.65144 −0.288991 −0.144495 0.989505i \(-0.546156\pi\)
−0.144495 + 0.989505i \(0.546156\pi\)
\(702\) 9.89937 0.373628
\(703\) 6.19469 0.233637
\(704\) 32.2150 1.21415
\(705\) 7.32161 0.275748
\(706\) 29.7178 1.11845
\(707\) 0 0
\(708\) 10.1963 0.383202
\(709\) 36.0169 1.35264 0.676322 0.736606i \(-0.263573\pi\)
0.676322 + 0.736606i \(0.263573\pi\)
\(710\) 10.0630 0.377656
\(711\) 15.3431 0.575411
\(712\) 23.5459 0.882421
\(713\) −5.48680 −0.205482
\(714\) 0 0
\(715\) −19.2758 −0.720873
\(716\) 6.49670 0.242793
\(717\) −8.00574 −0.298980
\(718\) −34.7374 −1.29639
\(719\) −4.66413 −0.173943 −0.0869714 0.996211i \(-0.527719\pi\)
−0.0869714 + 0.996211i \(0.527719\pi\)
\(720\) −10.1919 −0.379829
\(721\) 0 0
\(722\) 28.7376 1.06950
\(723\) 32.5595 1.21090
\(724\) 0.781147 0.0290311
\(725\) 1.83732 0.0682364
\(726\) 68.1657 2.52987
\(727\) −16.8494 −0.624910 −0.312455 0.949933i \(-0.601151\pi\)
−0.312455 + 0.949933i \(0.601151\pi\)
\(728\) 0 0
\(729\) −11.1676 −0.413613
\(730\) 20.9822 0.776585
\(731\) 16.9557 0.627128
\(732\) −13.0679 −0.483005
\(733\) −1.07302 −0.0396328 −0.0198164 0.999804i \(-0.506308\pi\)
−0.0198164 + 0.999804i \(0.506308\pi\)
\(734\) 16.3922 0.605047
\(735\) 0 0
\(736\) 12.1200 0.446751
\(737\) −68.7098 −2.53096
\(738\) 20.7838 0.765064
\(739\) −0.561792 −0.0206659 −0.0103329 0.999947i \(-0.503289\pi\)
−0.0103329 + 0.999947i \(0.503289\pi\)
\(740\) 3.72176 0.136815
\(741\) 5.26102 0.193268
\(742\) 0 0
\(743\) −33.9922 −1.24705 −0.623527 0.781802i \(-0.714301\pi\)
−0.623527 + 0.781802i \(0.714301\pi\)
\(744\) 5.66118 0.207549
\(745\) −9.73968 −0.356834
\(746\) −54.0394 −1.97852
\(747\) −37.0865 −1.35693
\(748\) −4.93291 −0.180365
\(749\) 0 0
\(750\) 3.52934 0.128873
\(751\) 24.2120 0.883508 0.441754 0.897136i \(-0.354356\pi\)
0.441754 + 0.897136i \(0.354356\pi\)
\(752\) 14.8839 0.542760
\(753\) 37.7628 1.37615
\(754\) 9.95669 0.362601
\(755\) −11.5032 −0.418644
\(756\) 0 0
\(757\) −44.6814 −1.62397 −0.811987 0.583675i \(-0.801614\pi\)
−0.811987 + 0.583675i \(0.801614\pi\)
\(758\) −41.6355 −1.51227
\(759\) −68.8801 −2.50019
\(760\) 1.63637 0.0593573
\(761\) 35.7320 1.29529 0.647643 0.761944i \(-0.275755\pi\)
0.647643 + 0.761944i \(0.275755\pi\)
\(762\) 1.43155 0.0518595
\(763\) 0 0
\(764\) −2.83086 −0.102417
\(765\) −4.97527 −0.179881
\(766\) 21.1073 0.762637
\(767\) 39.5390 1.42767
\(768\) −20.8748 −0.753254
\(769\) 10.0260 0.361548 0.180774 0.983525i \(-0.442140\pi\)
0.180774 + 0.983525i \(0.442140\pi\)
\(770\) 0 0
\(771\) −10.2113 −0.367753
\(772\) 8.19168 0.294825
\(773\) 4.34731 0.156362 0.0781810 0.996939i \(-0.475089\pi\)
0.0781810 + 0.996939i \(0.475089\pi\)
\(774\) 25.5048 0.916750
\(775\) −1.00000 −0.0359211
\(776\) −15.8124 −0.567632
\(777\) 0 0
\(778\) 35.8662 1.28587
\(779\) −4.02459 −0.144196
\(780\) 3.16081 0.113175
\(781\) −35.7938 −1.28080
\(782\) 19.2170 0.687197
\(783\) 3.35631 0.119945
\(784\) 0 0
\(785\) 13.4330 0.479444
\(786\) 54.0792 1.92894
\(787\) −2.04208 −0.0727922 −0.0363961 0.999337i \(-0.511588\pi\)
−0.0363961 + 0.999337i \(0.511588\pi\)
\(788\) 4.62298 0.164687
\(789\) 22.5025 0.801109
\(790\) −10.8009 −0.384280
\(791\) 0 0
\(792\) 30.0585 1.06808
\(793\) −50.6744 −1.79950
\(794\) 15.5538 0.551985
\(795\) −0.345488 −0.0122532
\(796\) 1.50211 0.0532408
\(797\) 38.4808 1.36306 0.681531 0.731789i \(-0.261315\pi\)
0.681531 + 0.731789i \(0.261315\pi\)
\(798\) 0 0
\(799\) 7.26573 0.257043
\(800\) 2.20895 0.0780980
\(801\) 20.8523 0.736779
\(802\) −14.2527 −0.503282
\(803\) −74.6332 −2.63375
\(804\) 11.2669 0.397354
\(805\) 0 0
\(806\) −5.41914 −0.190881
\(807\) −19.3932 −0.682672
\(808\) −17.7997 −0.626190
\(809\) −49.6257 −1.74475 −0.872374 0.488840i \(-0.837420\pi\)
−0.872374 + 0.488840i \(0.837420\pi\)
\(810\) 16.6578 0.585297
\(811\) −36.6822 −1.28809 −0.644043 0.764989i \(-0.722744\pi\)
−0.644043 + 0.764989i \(0.722744\pi\)
\(812\) 0 0
\(813\) −72.7875 −2.55277
\(814\) −80.1041 −2.80765
\(815\) −21.0713 −0.738097
\(816\) −23.9134 −0.837136
\(817\) −4.93875 −0.172785
\(818\) 38.5471 1.34777
\(819\) 0 0
\(820\) −2.41797 −0.0844390
\(821\) 5.40450 0.188618 0.0943092 0.995543i \(-0.469936\pi\)
0.0943092 + 0.995543i \(0.469936\pi\)
\(822\) 22.0813 0.770173
\(823\) 12.5805 0.438529 0.219265 0.975665i \(-0.429634\pi\)
0.219265 + 0.975665i \(0.429634\pi\)
\(824\) −3.97766 −0.138568
\(825\) −12.5538 −0.437067
\(826\) 0 0
\(827\) 5.25497 0.182733 0.0913665 0.995817i \(-0.470877\pi\)
0.0913665 + 0.995817i \(0.470877\pi\)
\(828\) 4.77712 0.166017
\(829\) −39.7311 −1.37992 −0.689958 0.723849i \(-0.742371\pi\)
−0.689958 + 0.723849i \(0.742371\pi\)
\(830\) 26.1075 0.906203
\(831\) −48.7854 −1.69235
\(832\) −20.4845 −0.710173
\(833\) 0 0
\(834\) 59.9029 2.07427
\(835\) 3.45837 0.119682
\(836\) 1.43683 0.0496937
\(837\) −1.82674 −0.0631415
\(838\) 23.2882 0.804478
\(839\) −29.1233 −1.00545 −0.502724 0.864447i \(-0.667669\pi\)
−0.502724 + 0.864447i \(0.667669\pi\)
\(840\) 0 0
\(841\) −25.6243 −0.883595
\(842\) 22.2368 0.766330
\(843\) 4.71115 0.162261
\(844\) 6.62531 0.228053
\(845\) −0.743122 −0.0255642
\(846\) 10.9291 0.375751
\(847\) 0 0
\(848\) −0.702334 −0.0241182
\(849\) 20.0641 0.688597
\(850\) 3.50240 0.120131
\(851\) 51.5717 1.76786
\(852\) 5.86941 0.201083
\(853\) −10.6458 −0.364506 −0.182253 0.983252i \(-0.558339\pi\)
−0.182253 + 0.983252i \(0.558339\pi\)
\(854\) 0 0
\(855\) 1.44917 0.0495605
\(856\) −23.3234 −0.797178
\(857\) 33.4890 1.14396 0.571980 0.820267i \(-0.306175\pi\)
0.571980 + 0.820267i \(0.306175\pi\)
\(858\) −68.0307 −2.32253
\(859\) −17.9224 −0.611504 −0.305752 0.952111i \(-0.598908\pi\)
−0.305752 + 0.952111i \(0.598908\pi\)
\(860\) −2.96719 −0.101180
\(861\) 0 0
\(862\) −9.67568 −0.329555
\(863\) −47.1061 −1.60351 −0.801755 0.597653i \(-0.796100\pi\)
−0.801755 + 0.597653i \(0.796100\pi\)
\(864\) 4.03518 0.137280
\(865\) −3.36388 −0.114375
\(866\) 28.5553 0.970348
\(867\) 27.0880 0.919958
\(868\) 0 0
\(869\) 38.4188 1.30327
\(870\) 6.48452 0.219846
\(871\) 43.6905 1.48040
\(872\) −1.63392 −0.0553315
\(873\) −14.0035 −0.473945
\(874\) −5.59740 −0.189335
\(875\) 0 0
\(876\) 12.2382 0.413492
\(877\) −1.31568 −0.0444273 −0.0222137 0.999753i \(-0.507071\pi\)
−0.0222137 + 0.999753i \(0.507071\pi\)
\(878\) 46.8068 1.57965
\(879\) 37.4248 1.26231
\(880\) −25.5202 −0.860287
\(881\) −11.1760 −0.376530 −0.188265 0.982118i \(-0.560286\pi\)
−0.188265 + 0.982118i \(0.560286\pi\)
\(882\) 0 0
\(883\) −45.4449 −1.52934 −0.764671 0.644420i \(-0.777099\pi\)
−0.764671 + 0.644420i \(0.777099\pi\)
\(884\) 3.13669 0.105498
\(885\) 25.7507 0.865600
\(886\) 20.4310 0.686392
\(887\) 45.9920 1.54426 0.772131 0.635464i \(-0.219191\pi\)
0.772131 + 0.635464i \(0.219191\pi\)
\(888\) −53.2108 −1.78564
\(889\) 0 0
\(890\) −14.6792 −0.492047
\(891\) −59.2516 −1.98500
\(892\) 7.03862 0.235670
\(893\) −2.11632 −0.0708198
\(894\) −34.3746 −1.14966
\(895\) 16.4073 0.548435
\(896\) 0 0
\(897\) 43.7988 1.46240
\(898\) −34.5426 −1.15270
\(899\) −1.83732 −0.0612781
\(900\) 0.870658 0.0290219
\(901\) −0.342852 −0.0114220
\(902\) 52.0423 1.73282
\(903\) 0 0
\(904\) −10.4139 −0.346360
\(905\) 1.97277 0.0655772
\(906\) −40.5986 −1.34880
\(907\) 0.506069 0.0168037 0.00840187 0.999965i \(-0.497326\pi\)
0.00840187 + 0.999965i \(0.497326\pi\)
\(908\) 6.86934 0.227967
\(909\) −15.7634 −0.522838
\(910\) 0 0
\(911\) 30.4852 1.01002 0.505009 0.863114i \(-0.331489\pi\)
0.505009 + 0.863114i \(0.331489\pi\)
\(912\) 6.96535 0.230646
\(913\) −92.8638 −3.07334
\(914\) 41.7015 1.37936
\(915\) −33.0028 −1.09104
\(916\) −6.76834 −0.223632
\(917\) 0 0
\(918\) 6.39798 0.211165
\(919\) −25.1796 −0.830599 −0.415300 0.909685i \(-0.636323\pi\)
−0.415300 + 0.909685i \(0.636323\pi\)
\(920\) 13.6230 0.449138
\(921\) −11.0680 −0.364702
\(922\) −27.5927 −0.908716
\(923\) 22.7602 0.749160
\(924\) 0 0
\(925\) 9.39924 0.309045
\(926\) −57.9328 −1.90379
\(927\) −3.52261 −0.115698
\(928\) 4.05854 0.133228
\(929\) −32.9737 −1.08183 −0.540915 0.841077i \(-0.681922\pi\)
−0.540915 + 0.841077i \(0.681922\pi\)
\(930\) −3.52934 −0.115731
\(931\) 0 0
\(932\) −11.6987 −0.383204
\(933\) −42.9003 −1.40449
\(934\) 29.5547 0.967060
\(935\) −12.4580 −0.407419
\(936\) −19.1133 −0.624738
\(937\) 2.84832 0.0930506 0.0465253 0.998917i \(-0.485185\pi\)
0.0465253 + 0.998917i \(0.485185\pi\)
\(938\) 0 0
\(939\) 57.4813 1.87583
\(940\) −1.27148 −0.0414711
\(941\) −46.7365 −1.52357 −0.761783 0.647832i \(-0.775676\pi\)
−0.761783 + 0.647832i \(0.775676\pi\)
\(942\) 47.4096 1.54469
\(943\) −33.5053 −1.09108
\(944\) 52.3479 1.70378
\(945\) 0 0
\(946\) 63.8634 2.07638
\(947\) −19.0159 −0.617932 −0.308966 0.951073i \(-0.599983\pi\)
−0.308966 + 0.951073i \(0.599983\pi\)
\(948\) −6.29985 −0.204610
\(949\) 47.4570 1.54052
\(950\) −1.02016 −0.0330983
\(951\) −55.1095 −1.78705
\(952\) 0 0
\(953\) 58.8382 1.90596 0.952978 0.303038i \(-0.0980010\pi\)
0.952978 + 0.303038i \(0.0980010\pi\)
\(954\) −0.515718 −0.0166970
\(955\) −7.14928 −0.231345
\(956\) 1.39029 0.0449651
\(957\) −23.0653 −0.745596
\(958\) −27.9211 −0.902091
\(959\) 0 0
\(960\) −13.3410 −0.430579
\(961\) 1.00000 0.0322581
\(962\) 50.9357 1.64223
\(963\) −20.6552 −0.665604
\(964\) −5.65433 −0.182114
\(965\) 20.6879 0.665968
\(966\) 0 0
\(967\) 33.6630 1.08253 0.541264 0.840853i \(-0.317946\pi\)
0.541264 + 0.840853i \(0.317946\pi\)
\(968\) 47.9543 1.54131
\(969\) 3.40021 0.109230
\(970\) 9.85789 0.316518
\(971\) 4.10881 0.131858 0.0659290 0.997824i \(-0.478999\pi\)
0.0659290 + 0.997824i \(0.478999\pi\)
\(972\) 7.54601 0.242038
\(973\) 0 0
\(974\) 8.17834 0.262051
\(975\) 7.98257 0.255647
\(976\) −67.0906 −2.14752
\(977\) −39.3116 −1.25769 −0.628845 0.777531i \(-0.716472\pi\)
−0.628845 + 0.777531i \(0.716472\pi\)
\(978\) −74.3678 −2.37802
\(979\) 52.2136 1.66875
\(980\) 0 0
\(981\) −1.44700 −0.0461991
\(982\) −30.9526 −0.987738
\(983\) −16.2085 −0.516971 −0.258485 0.966015i \(-0.583223\pi\)
−0.258485 + 0.966015i \(0.583223\pi\)
\(984\) 34.5701 1.10206
\(985\) 11.6752 0.372004
\(986\) 6.43503 0.204933
\(987\) 0 0
\(988\) −0.913635 −0.0290666
\(989\) −41.1158 −1.30741
\(990\) −18.7393 −0.595574
\(991\) 57.9932 1.84221 0.921107 0.389308i \(-0.127286\pi\)
0.921107 + 0.389308i \(0.127286\pi\)
\(992\) −2.20895 −0.0701341
\(993\) 17.2331 0.546877
\(994\) 0 0
\(995\) 3.79354 0.120263
\(996\) 15.2277 0.482507
\(997\) −39.8674 −1.26261 −0.631307 0.775533i \(-0.717481\pi\)
−0.631307 + 0.775533i \(0.717481\pi\)
\(998\) −2.58043 −0.0816822
\(999\) 17.1700 0.543235
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7595.2.a.bf.1.7 21
7.3 odd 6 1085.2.j.d.156.15 42
7.5 odd 6 1085.2.j.d.466.15 yes 42
7.6 odd 2 7595.2.a.bg.1.7 21
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1085.2.j.d.156.15 42 7.3 odd 6
1085.2.j.d.466.15 yes 42 7.5 odd 6
7595.2.a.bf.1.7 21 1.1 even 1 trivial
7595.2.a.bg.1.7 21 7.6 odd 2