Properties

Label 7595.2.a.bf.1.12
Level $7595$
Weight $2$
Character 7595.1
Self dual yes
Analytic conductor $60.646$
Analytic rank $1$
Dimension $21$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7595,2,Mod(1,7595)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7595, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7595.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7595 = 5 \cdot 7^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7595.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.6463803352\)
Analytic rank: \(1\)
Dimension: \(21\)
Twist minimal: no (minimal twist has level 1085)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Character \(\chi\) \(=\) 7595.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.0843633 q^{2} -1.56695 q^{3} -1.99288 q^{4} +1.00000 q^{5} +0.132193 q^{6} +0.336853 q^{8} -0.544660 q^{9} +O(q^{10})\) \(q-0.0843633 q^{2} -1.56695 q^{3} -1.99288 q^{4} +1.00000 q^{5} +0.132193 q^{6} +0.336853 q^{8} -0.544660 q^{9} -0.0843633 q^{10} -0.417803 q^{11} +3.12275 q^{12} +5.82334 q^{13} -1.56695 q^{15} +3.95735 q^{16} -0.976364 q^{17} +0.0459493 q^{18} -2.75790 q^{19} -1.99288 q^{20} +0.0352472 q^{22} -5.32755 q^{23} -0.527832 q^{24} +1.00000 q^{25} -0.491276 q^{26} +5.55431 q^{27} -6.82472 q^{29} +0.132193 q^{30} -1.00000 q^{31} -1.00756 q^{32} +0.654678 q^{33} +0.0823692 q^{34} +1.08544 q^{36} +6.67113 q^{37} +0.232666 q^{38} -9.12489 q^{39} +0.336853 q^{40} +2.30190 q^{41} -4.56460 q^{43} +0.832633 q^{44} -0.544660 q^{45} +0.449450 q^{46} +6.42985 q^{47} -6.20098 q^{48} -0.0843633 q^{50} +1.52992 q^{51} -11.6052 q^{52} -3.30192 q^{53} -0.468580 q^{54} -0.417803 q^{55} +4.32150 q^{57} +0.575755 q^{58} -12.6488 q^{59} +3.12275 q^{60} -8.68329 q^{61} +0.0843633 q^{62} -7.82969 q^{64} +5.82334 q^{65} -0.0552307 q^{66} +4.23851 q^{67} +1.94578 q^{68} +8.34802 q^{69} +13.1823 q^{71} -0.183470 q^{72} -4.64044 q^{73} -0.562798 q^{74} -1.56695 q^{75} +5.49618 q^{76} +0.769806 q^{78} +14.5570 q^{79} +3.95735 q^{80} -7.06936 q^{81} -0.194196 q^{82} +15.6328 q^{83} -0.976364 q^{85} +0.385085 q^{86} +10.6940 q^{87} -0.140738 q^{88} -7.30423 q^{89} +0.0459493 q^{90} +10.6172 q^{92} +1.56695 q^{93} -0.542443 q^{94} -2.75790 q^{95} +1.57880 q^{96} +3.45312 q^{97} +0.227561 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 21 q - 4 q^{2} - 5 q^{3} + 22 q^{4} + 21 q^{5} - 6 q^{6} - 12 q^{8} + 20 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 21 q - 4 q^{2} - 5 q^{3} + 22 q^{4} + 21 q^{5} - 6 q^{6} - 12 q^{8} + 20 q^{9} - 4 q^{10} - 4 q^{11} - 21 q^{12} - 24 q^{13} - 5 q^{15} + 20 q^{16} - 18 q^{17} - 16 q^{18} - 17 q^{19} + 22 q^{20} + 9 q^{22} - 19 q^{23} - 21 q^{24} + 21 q^{25} - 16 q^{26} - 17 q^{27} - 4 q^{29} - 6 q^{30} - 21 q^{31} - 18 q^{32} - 27 q^{33} + 2 q^{34} + 52 q^{36} - 19 q^{37} + 10 q^{38} + 21 q^{39} - 12 q^{40} - 5 q^{41} - 15 q^{43} - 11 q^{44} + 20 q^{45} + 6 q^{46} - 4 q^{47} - 19 q^{48} - 4 q^{50} + 35 q^{51} - 66 q^{52} - 19 q^{53} - 11 q^{54} - 4 q^{55} - 27 q^{57} - q^{58} + q^{59} - 21 q^{60} - 60 q^{61} + 4 q^{62} - 10 q^{64} - 24 q^{65} - 64 q^{66} + 2 q^{67} - 11 q^{68} - 18 q^{69} - q^{71} - 37 q^{72} - 51 q^{73} + 11 q^{74} - 5 q^{75} - 13 q^{76} - 40 q^{78} + q^{79} + 20 q^{80} + 21 q^{81} + 2 q^{82} - 38 q^{83} - 18 q^{85} + 26 q^{86} - 32 q^{87} + 5 q^{88} - 2 q^{89} - 16 q^{90} - 86 q^{92} + 5 q^{93} - 67 q^{94} - 17 q^{95} + 56 q^{96} - 42 q^{97} - 35 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0843633 −0.0596538 −0.0298269 0.999555i \(-0.509496\pi\)
−0.0298269 + 0.999555i \(0.509496\pi\)
\(3\) −1.56695 −0.904680 −0.452340 0.891845i \(-0.649411\pi\)
−0.452340 + 0.891845i \(0.649411\pi\)
\(4\) −1.99288 −0.996441
\(5\) 1.00000 0.447214
\(6\) 0.132193 0.0539677
\(7\) 0 0
\(8\) 0.336853 0.119095
\(9\) −0.544660 −0.181553
\(10\) −0.0843633 −0.0266780
\(11\) −0.417803 −0.125972 −0.0629862 0.998014i \(-0.520062\pi\)
−0.0629862 + 0.998014i \(0.520062\pi\)
\(12\) 3.12275 0.901461
\(13\) 5.82334 1.61510 0.807552 0.589797i \(-0.200792\pi\)
0.807552 + 0.589797i \(0.200792\pi\)
\(14\) 0 0
\(15\) −1.56695 −0.404585
\(16\) 3.95735 0.989337
\(17\) −0.976364 −0.236803 −0.118401 0.992966i \(-0.537777\pi\)
−0.118401 + 0.992966i \(0.537777\pi\)
\(18\) 0.0459493 0.0108304
\(19\) −2.75790 −0.632707 −0.316353 0.948641i \(-0.602459\pi\)
−0.316353 + 0.948641i \(0.602459\pi\)
\(20\) −1.99288 −0.445622
\(21\) 0 0
\(22\) 0.0352472 0.00751474
\(23\) −5.32755 −1.11087 −0.555436 0.831559i \(-0.687449\pi\)
−0.555436 + 0.831559i \(0.687449\pi\)
\(24\) −0.527832 −0.107743
\(25\) 1.00000 0.200000
\(26\) −0.491276 −0.0963471
\(27\) 5.55431 1.06893
\(28\) 0 0
\(29\) −6.82472 −1.26732 −0.633659 0.773612i \(-0.718448\pi\)
−0.633659 + 0.773612i \(0.718448\pi\)
\(30\) 0.132193 0.0241351
\(31\) −1.00000 −0.179605
\(32\) −1.00756 −0.178113
\(33\) 0.654678 0.113965
\(34\) 0.0823692 0.0141262
\(35\) 0 0
\(36\) 1.08544 0.180907
\(37\) 6.67113 1.09673 0.548364 0.836240i \(-0.315251\pi\)
0.548364 + 0.836240i \(0.315251\pi\)
\(38\) 0.232666 0.0377434
\(39\) −9.12489 −1.46115
\(40\) 0.336853 0.0532611
\(41\) 2.30190 0.359496 0.179748 0.983713i \(-0.442472\pi\)
0.179748 + 0.983713i \(0.442472\pi\)
\(42\) 0 0
\(43\) −4.56460 −0.696095 −0.348048 0.937477i \(-0.613155\pi\)
−0.348048 + 0.937477i \(0.613155\pi\)
\(44\) 0.832633 0.125524
\(45\) −0.544660 −0.0811932
\(46\) 0.449450 0.0662677
\(47\) 6.42985 0.937890 0.468945 0.883227i \(-0.344634\pi\)
0.468945 + 0.883227i \(0.344634\pi\)
\(48\) −6.20098 −0.895034
\(49\) 0 0
\(50\) −0.0843633 −0.0119308
\(51\) 1.52992 0.214231
\(52\) −11.6052 −1.60936
\(53\) −3.30192 −0.453554 −0.226777 0.973947i \(-0.572819\pi\)
−0.226777 + 0.973947i \(0.572819\pi\)
\(54\) −0.468580 −0.0637657
\(55\) −0.417803 −0.0563366
\(56\) 0 0
\(57\) 4.32150 0.572397
\(58\) 0.575755 0.0756004
\(59\) −12.6488 −1.64674 −0.823368 0.567508i \(-0.807908\pi\)
−0.823368 + 0.567508i \(0.807908\pi\)
\(60\) 3.12275 0.403146
\(61\) −8.68329 −1.11178 −0.555890 0.831256i \(-0.687623\pi\)
−0.555890 + 0.831256i \(0.687623\pi\)
\(62\) 0.0843633 0.0107141
\(63\) 0 0
\(64\) −7.82969 −0.978712
\(65\) 5.82334 0.722296
\(66\) −0.0552307 −0.00679843
\(67\) 4.23851 0.517817 0.258908 0.965902i \(-0.416637\pi\)
0.258908 + 0.965902i \(0.416637\pi\)
\(68\) 1.94578 0.235960
\(69\) 8.34802 1.00498
\(70\) 0 0
\(71\) 13.1823 1.56446 0.782228 0.622993i \(-0.214083\pi\)
0.782228 + 0.622993i \(0.214083\pi\)
\(72\) −0.183470 −0.0216222
\(73\) −4.64044 −0.543123 −0.271561 0.962421i \(-0.587540\pi\)
−0.271561 + 0.962421i \(0.587540\pi\)
\(74\) −0.562798 −0.0654240
\(75\) −1.56695 −0.180936
\(76\) 5.49618 0.630455
\(77\) 0 0
\(78\) 0.769806 0.0871633
\(79\) 14.5570 1.63780 0.818898 0.573940i \(-0.194586\pi\)
0.818898 + 0.573940i \(0.194586\pi\)
\(80\) 3.95735 0.442445
\(81\) −7.06936 −0.785485
\(82\) −0.194196 −0.0214453
\(83\) 15.6328 1.71592 0.857960 0.513716i \(-0.171732\pi\)
0.857960 + 0.513716i \(0.171732\pi\)
\(84\) 0 0
\(85\) −0.976364 −0.105902
\(86\) 0.385085 0.0415247
\(87\) 10.6940 1.14652
\(88\) −0.140738 −0.0150027
\(89\) −7.30423 −0.774247 −0.387123 0.922028i \(-0.626531\pi\)
−0.387123 + 0.922028i \(0.626531\pi\)
\(90\) 0.0459493 0.00484348
\(91\) 0 0
\(92\) 10.6172 1.10692
\(93\) 1.56695 0.162485
\(94\) −0.542443 −0.0559488
\(95\) −2.75790 −0.282955
\(96\) 1.57880 0.161135
\(97\) 3.45312 0.350611 0.175305 0.984514i \(-0.443909\pi\)
0.175305 + 0.984514i \(0.443909\pi\)
\(98\) 0 0
\(99\) 0.227561 0.0228707
\(100\) −1.99288 −0.199288
\(101\) 5.15019 0.512463 0.256231 0.966615i \(-0.417519\pi\)
0.256231 + 0.966615i \(0.417519\pi\)
\(102\) −0.129069 −0.0127797
\(103\) 8.70759 0.857984 0.428992 0.903308i \(-0.358869\pi\)
0.428992 + 0.903308i \(0.358869\pi\)
\(104\) 1.96161 0.192351
\(105\) 0 0
\(106\) 0.278561 0.0270562
\(107\) 9.67221 0.935048 0.467524 0.883980i \(-0.345146\pi\)
0.467524 + 0.883980i \(0.345146\pi\)
\(108\) −11.0691 −1.06512
\(109\) −6.61075 −0.633195 −0.316598 0.948560i \(-0.602540\pi\)
−0.316598 + 0.948560i \(0.602540\pi\)
\(110\) 0.0352472 0.00336069
\(111\) −10.4533 −0.992188
\(112\) 0 0
\(113\) −1.07901 −0.101505 −0.0507525 0.998711i \(-0.516162\pi\)
−0.0507525 + 0.998711i \(0.516162\pi\)
\(114\) −0.364576 −0.0341457
\(115\) −5.32755 −0.496797
\(116\) 13.6009 1.26281
\(117\) −3.17174 −0.293228
\(118\) 1.06710 0.0982341
\(119\) 0 0
\(120\) −0.527832 −0.0481842
\(121\) −10.8254 −0.984131
\(122\) 0.732550 0.0663220
\(123\) −3.60696 −0.325229
\(124\) 1.99288 0.178966
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −2.69724 −0.239341 −0.119671 0.992814i \(-0.538184\pi\)
−0.119671 + 0.992814i \(0.538184\pi\)
\(128\) 2.67566 0.236497
\(129\) 7.15251 0.629744
\(130\) −0.491276 −0.0430877
\(131\) 8.07156 0.705216 0.352608 0.935771i \(-0.385295\pi\)
0.352608 + 0.935771i \(0.385295\pi\)
\(132\) −1.30470 −0.113559
\(133\) 0 0
\(134\) −0.357575 −0.0308897
\(135\) 5.55431 0.478039
\(136\) −0.328891 −0.0282021
\(137\) −19.8108 −1.69255 −0.846277 0.532743i \(-0.821161\pi\)
−0.846277 + 0.532743i \(0.821161\pi\)
\(138\) −0.704266 −0.0599511
\(139\) −12.9035 −1.09446 −0.547231 0.836982i \(-0.684318\pi\)
−0.547231 + 0.836982i \(0.684318\pi\)
\(140\) 0 0
\(141\) −10.0753 −0.848491
\(142\) −1.11210 −0.0933257
\(143\) −2.43301 −0.203458
\(144\) −2.15541 −0.179618
\(145\) −6.82472 −0.566762
\(146\) 0.391483 0.0323994
\(147\) 0 0
\(148\) −13.2948 −1.09282
\(149\) 15.9687 1.30820 0.654102 0.756406i \(-0.273047\pi\)
0.654102 + 0.756406i \(0.273047\pi\)
\(150\) 0.132193 0.0107935
\(151\) 19.5816 1.59353 0.796766 0.604288i \(-0.206542\pi\)
0.796766 + 0.604288i \(0.206542\pi\)
\(152\) −0.929007 −0.0753524
\(153\) 0.531786 0.0429924
\(154\) 0 0
\(155\) −1.00000 −0.0803219
\(156\) 18.1848 1.45595
\(157\) −14.0979 −1.12514 −0.562569 0.826750i \(-0.690187\pi\)
−0.562569 + 0.826750i \(0.690187\pi\)
\(158\) −1.22808 −0.0977008
\(159\) 5.17396 0.410322
\(160\) −1.00756 −0.0796546
\(161\) 0 0
\(162\) 0.596395 0.0468572
\(163\) −11.7852 −0.923084 −0.461542 0.887118i \(-0.652704\pi\)
−0.461542 + 0.887118i \(0.652704\pi\)
\(164\) −4.58741 −0.358217
\(165\) 0.654678 0.0509666
\(166\) −1.31883 −0.102361
\(167\) 12.1219 0.938021 0.469010 0.883193i \(-0.344611\pi\)
0.469010 + 0.883193i \(0.344611\pi\)
\(168\) 0 0
\(169\) 20.9113 1.60856
\(170\) 0.0823692 0.00631743
\(171\) 1.50212 0.114870
\(172\) 9.09672 0.693618
\(173\) 12.8633 0.977977 0.488988 0.872290i \(-0.337366\pi\)
0.488988 + 0.872290i \(0.337366\pi\)
\(174\) −0.902181 −0.0683942
\(175\) 0 0
\(176\) −1.65339 −0.124629
\(177\) 19.8201 1.48977
\(178\) 0.616208 0.0461868
\(179\) 3.77080 0.281843 0.140921 0.990021i \(-0.454994\pi\)
0.140921 + 0.990021i \(0.454994\pi\)
\(180\) 1.08544 0.0809042
\(181\) −22.5985 −1.67974 −0.839868 0.542791i \(-0.817367\pi\)
−0.839868 + 0.542791i \(0.817367\pi\)
\(182\) 0 0
\(183\) 13.6063 1.00581
\(184\) −1.79460 −0.132300
\(185\) 6.67113 0.490471
\(186\) −0.132193 −0.00969288
\(187\) 0.407928 0.0298306
\(188\) −12.8139 −0.934553
\(189\) 0 0
\(190\) 0.232666 0.0168794
\(191\) −14.1765 −1.02578 −0.512888 0.858456i \(-0.671424\pi\)
−0.512888 + 0.858456i \(0.671424\pi\)
\(192\) 12.2688 0.885421
\(193\) 17.5843 1.26575 0.632873 0.774256i \(-0.281876\pi\)
0.632873 + 0.774256i \(0.281876\pi\)
\(194\) −0.291316 −0.0209153
\(195\) −9.12489 −0.653447
\(196\) 0 0
\(197\) 22.7485 1.62076 0.810382 0.585902i \(-0.199260\pi\)
0.810382 + 0.585902i \(0.199260\pi\)
\(198\) −0.0191978 −0.00136433
\(199\) −12.0318 −0.852910 −0.426455 0.904509i \(-0.640238\pi\)
−0.426455 + 0.904509i \(0.640238\pi\)
\(200\) 0.336853 0.0238191
\(201\) −6.64154 −0.468458
\(202\) −0.434487 −0.0305704
\(203\) 0 0
\(204\) −3.04894 −0.213469
\(205\) 2.30190 0.160771
\(206\) −0.734600 −0.0511820
\(207\) 2.90171 0.201683
\(208\) 23.0450 1.59788
\(209\) 1.15226 0.0797036
\(210\) 0 0
\(211\) −4.21574 −0.290223 −0.145112 0.989415i \(-0.546354\pi\)
−0.145112 + 0.989415i \(0.546354\pi\)
\(212\) 6.58035 0.451940
\(213\) −20.6561 −1.41533
\(214\) −0.815979 −0.0557792
\(215\) −4.56460 −0.311303
\(216\) 1.87099 0.127304
\(217\) 0 0
\(218\) 0.557705 0.0377725
\(219\) 7.27135 0.491353
\(220\) 0.832633 0.0561361
\(221\) −5.68569 −0.382461
\(222\) 0.881878 0.0591878
\(223\) −26.2601 −1.75851 −0.879253 0.476355i \(-0.841958\pi\)
−0.879253 + 0.476355i \(0.841958\pi\)
\(224\) 0 0
\(225\) −0.544660 −0.0363107
\(226\) 0.0910291 0.00605517
\(227\) −6.66186 −0.442163 −0.221082 0.975255i \(-0.570959\pi\)
−0.221082 + 0.975255i \(0.570959\pi\)
\(228\) −8.61225 −0.570360
\(229\) −15.9972 −1.05713 −0.528564 0.848894i \(-0.677269\pi\)
−0.528564 + 0.848894i \(0.677269\pi\)
\(230\) 0.449450 0.0296358
\(231\) 0 0
\(232\) −2.29892 −0.150932
\(233\) −5.54622 −0.363345 −0.181673 0.983359i \(-0.558151\pi\)
−0.181673 + 0.983359i \(0.558151\pi\)
\(234\) 0.267578 0.0174921
\(235\) 6.42985 0.419437
\(236\) 25.2076 1.64088
\(237\) −22.8102 −1.48168
\(238\) 0 0
\(239\) 26.6301 1.72255 0.861277 0.508135i \(-0.169665\pi\)
0.861277 + 0.508135i \(0.169665\pi\)
\(240\) −6.20098 −0.400271
\(241\) −19.7572 −1.27267 −0.636336 0.771412i \(-0.719551\pi\)
−0.636336 + 0.771412i \(0.719551\pi\)
\(242\) 0.913269 0.0587072
\(243\) −5.58558 −0.358315
\(244\) 17.3048 1.10782
\(245\) 0 0
\(246\) 0.304295 0.0194012
\(247\) −16.0602 −1.02189
\(248\) −0.336853 −0.0213902
\(249\) −24.4958 −1.55236
\(250\) −0.0843633 −0.00533560
\(251\) 7.27291 0.459062 0.229531 0.973301i \(-0.426281\pi\)
0.229531 + 0.973301i \(0.426281\pi\)
\(252\) 0 0
\(253\) 2.22587 0.139939
\(254\) 0.227548 0.0142776
\(255\) 1.52992 0.0958070
\(256\) 15.4337 0.964604
\(257\) −17.6927 −1.10364 −0.551819 0.833964i \(-0.686066\pi\)
−0.551819 + 0.833964i \(0.686066\pi\)
\(258\) −0.603409 −0.0375666
\(259\) 0 0
\(260\) −11.6052 −0.719726
\(261\) 3.71715 0.230086
\(262\) −0.680943 −0.0420688
\(263\) 4.09605 0.252573 0.126286 0.991994i \(-0.459694\pi\)
0.126286 + 0.991994i \(0.459694\pi\)
\(264\) 0.220530 0.0135727
\(265\) −3.30192 −0.202836
\(266\) 0 0
\(267\) 11.4454 0.700446
\(268\) −8.44686 −0.515974
\(269\) 2.57492 0.156996 0.0784980 0.996914i \(-0.474988\pi\)
0.0784980 + 0.996914i \(0.474988\pi\)
\(270\) −0.468580 −0.0285169
\(271\) 15.2916 0.928897 0.464449 0.885600i \(-0.346252\pi\)
0.464449 + 0.885600i \(0.346252\pi\)
\(272\) −3.86381 −0.234278
\(273\) 0 0
\(274\) 1.67131 0.100967
\(275\) −0.417803 −0.0251945
\(276\) −16.6366 −1.00141
\(277\) −22.5290 −1.35363 −0.676817 0.736151i \(-0.736641\pi\)
−0.676817 + 0.736151i \(0.736641\pi\)
\(278\) 1.08858 0.0652888
\(279\) 0.544660 0.0326080
\(280\) 0 0
\(281\) −14.4022 −0.859161 −0.429580 0.903029i \(-0.641339\pi\)
−0.429580 + 0.903029i \(0.641339\pi\)
\(282\) 0.849983 0.0506157
\(283\) 27.3538 1.62602 0.813008 0.582252i \(-0.197828\pi\)
0.813008 + 0.582252i \(0.197828\pi\)
\(284\) −26.2708 −1.55889
\(285\) 4.32150 0.255984
\(286\) 0.205257 0.0121371
\(287\) 0 0
\(288\) 0.548778 0.0323370
\(289\) −16.0467 −0.943924
\(290\) 0.575755 0.0338095
\(291\) −5.41087 −0.317191
\(292\) 9.24786 0.541190
\(293\) −27.6195 −1.61355 −0.806775 0.590859i \(-0.798789\pi\)
−0.806775 + 0.590859i \(0.798789\pi\)
\(294\) 0 0
\(295\) −12.6488 −0.736443
\(296\) 2.24719 0.130615
\(297\) −2.32061 −0.134655
\(298\) −1.34717 −0.0780394
\(299\) −31.0241 −1.79417
\(300\) 3.12275 0.180292
\(301\) 0 0
\(302\) −1.65197 −0.0950603
\(303\) −8.07010 −0.463615
\(304\) −10.9140 −0.625960
\(305\) −8.68329 −0.497204
\(306\) −0.0448632 −0.00256466
\(307\) −7.07453 −0.403765 −0.201882 0.979410i \(-0.564706\pi\)
−0.201882 + 0.979410i \(0.564706\pi\)
\(308\) 0 0
\(309\) −13.6444 −0.776201
\(310\) 0.0843633 0.00479151
\(311\) −25.0300 −1.41932 −0.709661 0.704544i \(-0.751152\pi\)
−0.709661 + 0.704544i \(0.751152\pi\)
\(312\) −3.07374 −0.174016
\(313\) −15.3963 −0.870248 −0.435124 0.900371i \(-0.643295\pi\)
−0.435124 + 0.900371i \(0.643295\pi\)
\(314\) 1.18935 0.0671188
\(315\) 0 0
\(316\) −29.0105 −1.63197
\(317\) 10.2661 0.576603 0.288302 0.957540i \(-0.406909\pi\)
0.288302 + 0.957540i \(0.406909\pi\)
\(318\) −0.436492 −0.0244773
\(319\) 2.85139 0.159647
\(320\) −7.82969 −0.437693
\(321\) −15.1559 −0.845919
\(322\) 0 0
\(323\) 2.69272 0.149827
\(324\) 14.0884 0.782690
\(325\) 5.82334 0.323021
\(326\) 0.994234 0.0550655
\(327\) 10.3587 0.572839
\(328\) 0.775400 0.0428143
\(329\) 0 0
\(330\) −0.0552307 −0.00304035
\(331\) −2.95096 −0.162200 −0.0810998 0.996706i \(-0.525843\pi\)
−0.0810998 + 0.996706i \(0.525843\pi\)
\(332\) −31.1543 −1.70981
\(333\) −3.63350 −0.199115
\(334\) −1.02264 −0.0559565
\(335\) 4.23851 0.231575
\(336\) 0 0
\(337\) −15.6930 −0.854854 −0.427427 0.904050i \(-0.640580\pi\)
−0.427427 + 0.904050i \(0.640580\pi\)
\(338\) −1.76414 −0.0959567
\(339\) 1.69076 0.0918297
\(340\) 1.94578 0.105525
\(341\) 0.417803 0.0226253
\(342\) −0.126724 −0.00685244
\(343\) 0 0
\(344\) −1.53760 −0.0829017
\(345\) 8.34802 0.449442
\(346\) −1.08519 −0.0583401
\(347\) 24.2500 1.30181 0.650904 0.759160i \(-0.274390\pi\)
0.650904 + 0.759160i \(0.274390\pi\)
\(348\) −21.3119 −1.14244
\(349\) −7.46015 −0.399333 −0.199666 0.979864i \(-0.563986\pi\)
−0.199666 + 0.979864i \(0.563986\pi\)
\(350\) 0 0
\(351\) 32.3446 1.72643
\(352\) 0.420962 0.0224373
\(353\) 3.71832 0.197906 0.0989531 0.995092i \(-0.468451\pi\)
0.0989531 + 0.995092i \(0.468451\pi\)
\(354\) −1.67209 −0.0888705
\(355\) 13.1823 0.699646
\(356\) 14.5565 0.771491
\(357\) 0 0
\(358\) −0.318117 −0.0168130
\(359\) 20.2058 1.06642 0.533211 0.845983i \(-0.320985\pi\)
0.533211 + 0.845983i \(0.320985\pi\)
\(360\) −0.183470 −0.00966973
\(361\) −11.3940 −0.599682
\(362\) 1.90649 0.100203
\(363\) 16.9629 0.890324
\(364\) 0 0
\(365\) −4.64044 −0.242892
\(366\) −1.14787 −0.0600002
\(367\) 7.88907 0.411806 0.205903 0.978572i \(-0.433987\pi\)
0.205903 + 0.978572i \(0.433987\pi\)
\(368\) −21.0830 −1.09903
\(369\) −1.25375 −0.0652677
\(370\) −0.562798 −0.0292585
\(371\) 0 0
\(372\) −3.12275 −0.161907
\(373\) −13.0991 −0.678246 −0.339123 0.940742i \(-0.610130\pi\)
−0.339123 + 0.940742i \(0.610130\pi\)
\(374\) −0.0344141 −0.00177951
\(375\) −1.56695 −0.0809171
\(376\) 2.16591 0.111698
\(377\) −39.7426 −2.04685
\(378\) 0 0
\(379\) −27.3243 −1.40355 −0.701777 0.712397i \(-0.747610\pi\)
−0.701777 + 0.712397i \(0.747610\pi\)
\(380\) 5.49618 0.281948
\(381\) 4.22644 0.216527
\(382\) 1.19598 0.0611914
\(383\) −15.4111 −0.787471 −0.393736 0.919224i \(-0.628817\pi\)
−0.393736 + 0.919224i \(0.628817\pi\)
\(384\) −4.19263 −0.213954
\(385\) 0 0
\(386\) −1.48347 −0.0755066
\(387\) 2.48616 0.126378
\(388\) −6.88166 −0.349363
\(389\) 9.45290 0.479281 0.239641 0.970862i \(-0.422970\pi\)
0.239641 + 0.970862i \(0.422970\pi\)
\(390\) 0.769806 0.0389806
\(391\) 5.20163 0.263058
\(392\) 0 0
\(393\) −12.6478 −0.637995
\(394\) −1.91914 −0.0966848
\(395\) 14.5570 0.732444
\(396\) −0.453502 −0.0227893
\(397\) −26.0496 −1.30739 −0.653697 0.756757i \(-0.726783\pi\)
−0.653697 + 0.756757i \(0.726783\pi\)
\(398\) 1.01504 0.0508794
\(399\) 0 0
\(400\) 3.95735 0.197867
\(401\) 0.392311 0.0195911 0.00979554 0.999952i \(-0.496882\pi\)
0.00979554 + 0.999952i \(0.496882\pi\)
\(402\) 0.560302 0.0279453
\(403\) −5.82334 −0.290081
\(404\) −10.2637 −0.510639
\(405\) −7.06936 −0.351280
\(406\) 0 0
\(407\) −2.78722 −0.138157
\(408\) 0.515356 0.0255139
\(409\) 9.37777 0.463701 0.231850 0.972751i \(-0.425522\pi\)
0.231850 + 0.972751i \(0.425522\pi\)
\(410\) −0.194196 −0.00959063
\(411\) 31.0427 1.53122
\(412\) −17.3532 −0.854931
\(413\) 0 0
\(414\) −0.244797 −0.0120311
\(415\) 15.6328 0.767383
\(416\) −5.86736 −0.287671
\(417\) 20.2192 0.990138
\(418\) −0.0972085 −0.00475462
\(419\) 16.2136 0.792085 0.396042 0.918232i \(-0.370383\pi\)
0.396042 + 0.918232i \(0.370383\pi\)
\(420\) 0 0
\(421\) −12.0580 −0.587670 −0.293835 0.955856i \(-0.594932\pi\)
−0.293835 + 0.955856i \(0.594932\pi\)
\(422\) 0.355653 0.0173129
\(423\) −3.50209 −0.170277
\(424\) −1.11226 −0.0540162
\(425\) −0.976364 −0.0473606
\(426\) 1.74261 0.0844300
\(427\) 0 0
\(428\) −19.2756 −0.931720
\(429\) 3.81241 0.184065
\(430\) 0.385085 0.0185704
\(431\) 17.7010 0.852627 0.426314 0.904575i \(-0.359812\pi\)
0.426314 + 0.904575i \(0.359812\pi\)
\(432\) 21.9804 1.05753
\(433\) −16.5428 −0.794996 −0.397498 0.917603i \(-0.630121\pi\)
−0.397498 + 0.917603i \(0.630121\pi\)
\(434\) 0 0
\(435\) 10.6940 0.512738
\(436\) 13.1745 0.630942
\(437\) 14.6929 0.702856
\(438\) −0.613435 −0.0293111
\(439\) 8.78548 0.419308 0.209654 0.977776i \(-0.432766\pi\)
0.209654 + 0.977776i \(0.432766\pi\)
\(440\) −0.140738 −0.00670943
\(441\) 0 0
\(442\) 0.479664 0.0228153
\(443\) −10.0349 −0.476774 −0.238387 0.971170i \(-0.576619\pi\)
−0.238387 + 0.971170i \(0.576619\pi\)
\(444\) 20.8323 0.988657
\(445\) −7.30423 −0.346254
\(446\) 2.21539 0.104902
\(447\) −25.0221 −1.18351
\(448\) 0 0
\(449\) −31.9409 −1.50738 −0.753692 0.657228i \(-0.771729\pi\)
−0.753692 + 0.657228i \(0.771729\pi\)
\(450\) 0.0459493 0.00216607
\(451\) −0.961740 −0.0452866
\(452\) 2.15035 0.101144
\(453\) −30.6835 −1.44164
\(454\) 0.562016 0.0263767
\(455\) 0 0
\(456\) 1.45571 0.0681699
\(457\) 9.30313 0.435182 0.217591 0.976040i \(-0.430180\pi\)
0.217591 + 0.976040i \(0.430180\pi\)
\(458\) 1.34958 0.0630617
\(459\) −5.42303 −0.253125
\(460\) 10.6172 0.495029
\(461\) 14.6939 0.684364 0.342182 0.939634i \(-0.388834\pi\)
0.342182 + 0.939634i \(0.388834\pi\)
\(462\) 0 0
\(463\) −32.5119 −1.51096 −0.755478 0.655174i \(-0.772595\pi\)
−0.755478 + 0.655174i \(0.772595\pi\)
\(464\) −27.0078 −1.25380
\(465\) 1.56695 0.0726657
\(466\) 0.467897 0.0216749
\(467\) −40.2199 −1.86116 −0.930578 0.366093i \(-0.880695\pi\)
−0.930578 + 0.366093i \(0.880695\pi\)
\(468\) 6.32091 0.292184
\(469\) 0 0
\(470\) −0.542443 −0.0250210
\(471\) 22.0908 1.01789
\(472\) −4.26079 −0.196119
\(473\) 1.90710 0.0876888
\(474\) 1.92434 0.0883880
\(475\) −2.75790 −0.126541
\(476\) 0 0
\(477\) 1.79843 0.0823443
\(478\) −2.24660 −0.102757
\(479\) −31.2589 −1.42825 −0.714127 0.700016i \(-0.753176\pi\)
−0.714127 + 0.700016i \(0.753176\pi\)
\(480\) 1.57880 0.0720620
\(481\) 38.8482 1.77133
\(482\) 1.66678 0.0759198
\(483\) 0 0
\(484\) 21.5738 0.980629
\(485\) 3.45312 0.156798
\(486\) 0.471218 0.0213749
\(487\) 28.8012 1.30511 0.652553 0.757743i \(-0.273698\pi\)
0.652553 + 0.757743i \(0.273698\pi\)
\(488\) −2.92499 −0.132408
\(489\) 18.4668 0.835096
\(490\) 0 0
\(491\) −33.6929 −1.52054 −0.760270 0.649607i \(-0.774934\pi\)
−0.760270 + 0.649607i \(0.774934\pi\)
\(492\) 7.18825 0.324072
\(493\) 6.66341 0.300105
\(494\) 1.35489 0.0609594
\(495\) 0.227561 0.0102281
\(496\) −3.95735 −0.177690
\(497\) 0 0
\(498\) 2.06655 0.0926042
\(499\) −0.496525 −0.0222275 −0.0111138 0.999938i \(-0.503538\pi\)
−0.0111138 + 0.999938i \(0.503538\pi\)
\(500\) −1.99288 −0.0891244
\(501\) −18.9944 −0.848609
\(502\) −0.613567 −0.0273848
\(503\) −15.4223 −0.687648 −0.343824 0.939034i \(-0.611722\pi\)
−0.343824 + 0.939034i \(0.611722\pi\)
\(504\) 0 0
\(505\) 5.15019 0.229180
\(506\) −0.187782 −0.00834791
\(507\) −32.7669 −1.45523
\(508\) 5.37528 0.238489
\(509\) −19.6817 −0.872376 −0.436188 0.899856i \(-0.643672\pi\)
−0.436188 + 0.899856i \(0.643672\pi\)
\(510\) −0.129069 −0.00571526
\(511\) 0 0
\(512\) −6.65335 −0.294039
\(513\) −15.3183 −0.676318
\(514\) 1.49261 0.0658363
\(515\) 8.70759 0.383702
\(516\) −14.2541 −0.627503
\(517\) −2.68641 −0.118148
\(518\) 0 0
\(519\) −20.1561 −0.884756
\(520\) 1.96161 0.0860221
\(521\) 3.69024 0.161672 0.0808362 0.996727i \(-0.474241\pi\)
0.0808362 + 0.996727i \(0.474241\pi\)
\(522\) −0.313591 −0.0137255
\(523\) −26.5095 −1.15918 −0.579590 0.814908i \(-0.696787\pi\)
−0.579590 + 0.814908i \(0.696787\pi\)
\(524\) −16.0857 −0.702706
\(525\) 0 0
\(526\) −0.345556 −0.0150669
\(527\) 0.976364 0.0425311
\(528\) 2.59079 0.112750
\(529\) 5.38281 0.234035
\(530\) 0.278561 0.0120999
\(531\) 6.88931 0.298971
\(532\) 0 0
\(533\) 13.4047 0.580623
\(534\) −0.965569 −0.0417843
\(535\) 9.67221 0.418166
\(536\) 1.42775 0.0616696
\(537\) −5.90866 −0.254978
\(538\) −0.217229 −0.00936541
\(539\) 0 0
\(540\) −11.0691 −0.476338
\(541\) 4.38813 0.188660 0.0943302 0.995541i \(-0.469929\pi\)
0.0943302 + 0.995541i \(0.469929\pi\)
\(542\) −1.29005 −0.0554123
\(543\) 35.4108 1.51962
\(544\) 0.983745 0.0421777
\(545\) −6.61075 −0.283174
\(546\) 0 0
\(547\) 21.4740 0.918161 0.459081 0.888395i \(-0.348179\pi\)
0.459081 + 0.888395i \(0.348179\pi\)
\(548\) 39.4807 1.68653
\(549\) 4.72944 0.201848
\(550\) 0.0352472 0.00150295
\(551\) 18.8219 0.801841
\(552\) 2.81205 0.119689
\(553\) 0 0
\(554\) 1.90062 0.0807495
\(555\) −10.4533 −0.443720
\(556\) 25.7152 1.09057
\(557\) 2.82706 0.119787 0.0598933 0.998205i \(-0.480924\pi\)
0.0598933 + 0.998205i \(0.480924\pi\)
\(558\) −0.0459493 −0.00194519
\(559\) −26.5812 −1.12427
\(560\) 0 0
\(561\) −0.639203 −0.0269872
\(562\) 1.21501 0.0512522
\(563\) 17.8029 0.750305 0.375152 0.926963i \(-0.377590\pi\)
0.375152 + 0.926963i \(0.377590\pi\)
\(564\) 20.0788 0.845472
\(565\) −1.07901 −0.0453945
\(566\) −2.30766 −0.0969981
\(567\) 0 0
\(568\) 4.44050 0.186319
\(569\) −16.5704 −0.694667 −0.347333 0.937742i \(-0.612913\pi\)
−0.347333 + 0.937742i \(0.612913\pi\)
\(570\) −0.364576 −0.0152704
\(571\) −5.93416 −0.248337 −0.124169 0.992261i \(-0.539626\pi\)
−0.124169 + 0.992261i \(0.539626\pi\)
\(572\) 4.84870 0.202734
\(573\) 22.2139 0.927999
\(574\) 0 0
\(575\) −5.32755 −0.222174
\(576\) 4.26452 0.177688
\(577\) −1.88648 −0.0785352 −0.0392676 0.999229i \(-0.512502\pi\)
−0.0392676 + 0.999229i \(0.512502\pi\)
\(578\) 1.35375 0.0563087
\(579\) −27.5538 −1.14509
\(580\) 13.6009 0.564745
\(581\) 0 0
\(582\) 0.456479 0.0189217
\(583\) 1.37955 0.0571353
\(584\) −1.56315 −0.0646834
\(585\) −3.17174 −0.131135
\(586\) 2.33007 0.0962545
\(587\) −7.67946 −0.316965 −0.158483 0.987362i \(-0.550660\pi\)
−0.158483 + 0.987362i \(0.550660\pi\)
\(588\) 0 0
\(589\) 2.75790 0.113637
\(590\) 1.06710 0.0439316
\(591\) −35.6458 −1.46627
\(592\) 26.4000 1.08503
\(593\) 3.15261 0.129462 0.0647310 0.997903i \(-0.479381\pi\)
0.0647310 + 0.997903i \(0.479381\pi\)
\(594\) 0.195774 0.00803271
\(595\) 0 0
\(596\) −31.8237 −1.30355
\(597\) 18.8532 0.771611
\(598\) 2.61730 0.107029
\(599\) −35.3011 −1.44236 −0.721181 0.692746i \(-0.756401\pi\)
−0.721181 + 0.692746i \(0.756401\pi\)
\(600\) −0.527832 −0.0215487
\(601\) 24.8008 1.01164 0.505822 0.862638i \(-0.331189\pi\)
0.505822 + 0.862638i \(0.331189\pi\)
\(602\) 0 0
\(603\) −2.30855 −0.0940114
\(604\) −39.0239 −1.58786
\(605\) −10.8254 −0.440117
\(606\) 0.680820 0.0276564
\(607\) −30.7431 −1.24782 −0.623911 0.781495i \(-0.714457\pi\)
−0.623911 + 0.781495i \(0.714457\pi\)
\(608\) 2.77875 0.112693
\(609\) 0 0
\(610\) 0.732550 0.0296601
\(611\) 37.4432 1.51479
\(612\) −1.05979 −0.0428394
\(613\) 20.1621 0.814340 0.407170 0.913352i \(-0.366516\pi\)
0.407170 + 0.913352i \(0.366516\pi\)
\(614\) 0.596830 0.0240861
\(615\) −3.60696 −0.145447
\(616\) 0 0
\(617\) −37.5463 −1.51156 −0.755778 0.654828i \(-0.772741\pi\)
−0.755778 + 0.654828i \(0.772741\pi\)
\(618\) 1.15108 0.0463034
\(619\) −36.2669 −1.45769 −0.728844 0.684679i \(-0.759942\pi\)
−0.728844 + 0.684679i \(0.759942\pi\)
\(620\) 1.99288 0.0800361
\(621\) −29.5909 −1.18744
\(622\) 2.11161 0.0846679
\(623\) 0 0
\(624\) −36.1104 −1.44557
\(625\) 1.00000 0.0400000
\(626\) 1.29888 0.0519136
\(627\) −1.80554 −0.0721063
\(628\) 28.0955 1.12113
\(629\) −6.51345 −0.259708
\(630\) 0 0
\(631\) 42.5907 1.69551 0.847755 0.530388i \(-0.177954\pi\)
0.847755 + 0.530388i \(0.177954\pi\)
\(632\) 4.90358 0.195054
\(633\) 6.60586 0.262559
\(634\) −0.866084 −0.0343966
\(635\) −2.69724 −0.107037
\(636\) −10.3111 −0.408861
\(637\) 0 0
\(638\) −0.240552 −0.00952356
\(639\) −7.17989 −0.284032
\(640\) 2.67566 0.105765
\(641\) 20.4366 0.807195 0.403598 0.914937i \(-0.367760\pi\)
0.403598 + 0.914937i \(0.367760\pi\)
\(642\) 1.27860 0.0504623
\(643\) −4.53002 −0.178647 −0.0893233 0.996003i \(-0.528470\pi\)
−0.0893233 + 0.996003i \(0.528470\pi\)
\(644\) 0 0
\(645\) 7.15251 0.281630
\(646\) −0.227166 −0.00893774
\(647\) 1.05812 0.0415989 0.0207994 0.999784i \(-0.493379\pi\)
0.0207994 + 0.999784i \(0.493379\pi\)
\(648\) −2.38133 −0.0935476
\(649\) 5.28472 0.207443
\(650\) −0.491276 −0.0192694
\(651\) 0 0
\(652\) 23.4864 0.919799
\(653\) −11.0406 −0.432052 −0.216026 0.976388i \(-0.569310\pi\)
−0.216026 + 0.976388i \(0.569310\pi\)
\(654\) −0.873897 −0.0341721
\(655\) 8.07156 0.315382
\(656\) 9.10941 0.355663
\(657\) 2.52747 0.0986058
\(658\) 0 0
\(659\) 37.2927 1.45272 0.726358 0.687316i \(-0.241211\pi\)
0.726358 + 0.687316i \(0.241211\pi\)
\(660\) −1.30470 −0.0507852
\(661\) 23.1690 0.901171 0.450586 0.892733i \(-0.351215\pi\)
0.450586 + 0.892733i \(0.351215\pi\)
\(662\) 0.248953 0.00967582
\(663\) 8.90921 0.346005
\(664\) 5.26594 0.204358
\(665\) 0 0
\(666\) 0.306534 0.0118779
\(667\) 36.3590 1.40783
\(668\) −24.1575 −0.934683
\(669\) 41.1483 1.59089
\(670\) −0.357575 −0.0138143
\(671\) 3.62791 0.140054
\(672\) 0 0
\(673\) −36.5932 −1.41056 −0.705282 0.708926i \(-0.749180\pi\)
−0.705282 + 0.708926i \(0.749180\pi\)
\(674\) 1.32392 0.0509953
\(675\) 5.55431 0.213786
\(676\) −41.6737 −1.60283
\(677\) 16.3685 0.629093 0.314547 0.949242i \(-0.398148\pi\)
0.314547 + 0.949242i \(0.398148\pi\)
\(678\) −0.142638 −0.00547799
\(679\) 0 0
\(680\) −0.328891 −0.0126124
\(681\) 10.4388 0.400016
\(682\) −0.0352472 −0.00134969
\(683\) −17.9921 −0.688449 −0.344225 0.938887i \(-0.611858\pi\)
−0.344225 + 0.938887i \(0.611858\pi\)
\(684\) −2.99355 −0.114461
\(685\) −19.8108 −0.756934
\(686\) 0 0
\(687\) 25.0669 0.956362
\(688\) −18.0637 −0.688673
\(689\) −19.2282 −0.732537
\(690\) −0.704266 −0.0268110
\(691\) −30.1221 −1.14590 −0.572950 0.819590i \(-0.694201\pi\)
−0.572950 + 0.819590i \(0.694201\pi\)
\(692\) −25.6350 −0.974496
\(693\) 0 0
\(694\) −2.04581 −0.0776579
\(695\) −12.9035 −0.489458
\(696\) 3.60230 0.136545
\(697\) −2.24749 −0.0851297
\(698\) 0.629363 0.0238217
\(699\) 8.69067 0.328711
\(700\) 0 0
\(701\) 28.3296 1.07000 0.534998 0.844853i \(-0.320312\pi\)
0.534998 + 0.844853i \(0.320312\pi\)
\(702\) −2.72870 −0.102988
\(703\) −18.3983 −0.693907
\(704\) 3.27127 0.123291
\(705\) −10.0753 −0.379457
\(706\) −0.313690 −0.0118059
\(707\) 0 0
\(708\) −39.4991 −1.48447
\(709\) −14.6256 −0.549277 −0.274639 0.961548i \(-0.588558\pi\)
−0.274639 + 0.961548i \(0.588558\pi\)
\(710\) −1.11210 −0.0417365
\(711\) −7.92864 −0.297347
\(712\) −2.46045 −0.0922092
\(713\) 5.32755 0.199518
\(714\) 0 0
\(715\) −2.43301 −0.0909894
\(716\) −7.51476 −0.280840
\(717\) −41.7280 −1.55836
\(718\) −1.70463 −0.0636161
\(719\) −22.6426 −0.844426 −0.422213 0.906497i \(-0.638747\pi\)
−0.422213 + 0.906497i \(0.638747\pi\)
\(720\) −2.15541 −0.0803274
\(721\) 0 0
\(722\) 0.961232 0.0357733
\(723\) 30.9586 1.15136
\(724\) 45.0362 1.67376
\(725\) −6.82472 −0.253464
\(726\) −1.43105 −0.0531112
\(727\) 48.5828 1.80184 0.900919 0.433988i \(-0.142894\pi\)
0.900919 + 0.433988i \(0.142894\pi\)
\(728\) 0 0
\(729\) 29.9604 1.10965
\(730\) 0.391483 0.0144894
\(731\) 4.45671 0.164837
\(732\) −27.1158 −1.00223
\(733\) −31.1516 −1.15061 −0.575306 0.817938i \(-0.695117\pi\)
−0.575306 + 0.817938i \(0.695117\pi\)
\(734\) −0.665547 −0.0245658
\(735\) 0 0
\(736\) 5.36783 0.197861
\(737\) −1.77086 −0.0652306
\(738\) 0.105771 0.00389347
\(739\) 18.1289 0.666883 0.333441 0.942771i \(-0.391790\pi\)
0.333441 + 0.942771i \(0.391790\pi\)
\(740\) −13.2948 −0.488726
\(741\) 25.1656 0.924481
\(742\) 0 0
\(743\) −7.49404 −0.274930 −0.137465 0.990507i \(-0.543895\pi\)
−0.137465 + 0.990507i \(0.543895\pi\)
\(744\) 0.527832 0.0193513
\(745\) 15.9687 0.585047
\(746\) 1.10508 0.0404600
\(747\) −8.51455 −0.311531
\(748\) −0.812952 −0.0297245
\(749\) 0 0
\(750\) 0.132193 0.00482701
\(751\) 28.1338 1.02662 0.513309 0.858204i \(-0.328420\pi\)
0.513309 + 0.858204i \(0.328420\pi\)
\(752\) 25.4452 0.927890
\(753\) −11.3963 −0.415305
\(754\) 3.35282 0.122102
\(755\) 19.5816 0.712649
\(756\) 0 0
\(757\) −13.4716 −0.489632 −0.244816 0.969570i \(-0.578728\pi\)
−0.244816 + 0.969570i \(0.578728\pi\)
\(758\) 2.30516 0.0837274
\(759\) −3.48783 −0.126600
\(760\) −0.929007 −0.0336986
\(761\) 3.88821 0.140948 0.0704738 0.997514i \(-0.477549\pi\)
0.0704738 + 0.997514i \(0.477549\pi\)
\(762\) −0.356556 −0.0129167
\(763\) 0 0
\(764\) 28.2521 1.02212
\(765\) 0.531786 0.0192268
\(766\) 1.30013 0.0469757
\(767\) −73.6583 −2.65965
\(768\) −24.1838 −0.872658
\(769\) 34.8381 1.25629 0.628147 0.778094i \(-0.283814\pi\)
0.628147 + 0.778094i \(0.283814\pi\)
\(770\) 0 0
\(771\) 27.7236 0.998440
\(772\) −35.0434 −1.26124
\(773\) 40.9213 1.47184 0.735918 0.677071i \(-0.236751\pi\)
0.735918 + 0.677071i \(0.236751\pi\)
\(774\) −0.209740 −0.00753896
\(775\) −1.00000 −0.0359211
\(776\) 1.16319 0.0417561
\(777\) 0 0
\(778\) −0.797478 −0.0285910
\(779\) −6.34841 −0.227455
\(780\) 18.1848 0.651122
\(781\) −5.50762 −0.197078
\(782\) −0.438826 −0.0156924
\(783\) −37.9066 −1.35467
\(784\) 0 0
\(785\) −14.0979 −0.503177
\(786\) 1.06701 0.0380588
\(787\) −47.1709 −1.68146 −0.840731 0.541452i \(-0.817875\pi\)
−0.840731 + 0.541452i \(0.817875\pi\)
\(788\) −45.3351 −1.61500
\(789\) −6.41831 −0.228498
\(790\) −1.22808 −0.0436931
\(791\) 0 0
\(792\) 0.0766545 0.00272380
\(793\) −50.5657 −1.79564
\(794\) 2.19763 0.0779910
\(795\) 5.17396 0.183501
\(796\) 23.9779 0.849875
\(797\) 17.8587 0.632588 0.316294 0.948661i \(-0.397561\pi\)
0.316294 + 0.948661i \(0.397561\pi\)
\(798\) 0 0
\(799\) −6.27787 −0.222095
\(800\) −1.00756 −0.0356226
\(801\) 3.97832 0.140567
\(802\) −0.0330966 −0.00116868
\(803\) 1.93879 0.0684185
\(804\) 13.2358 0.466791
\(805\) 0 0
\(806\) 0.491276 0.0173044
\(807\) −4.03478 −0.142031
\(808\) 1.73485 0.0610320
\(809\) −43.6655 −1.53520 −0.767599 0.640930i \(-0.778549\pi\)
−0.767599 + 0.640930i \(0.778549\pi\)
\(810\) 0.596395 0.0209552
\(811\) 0.387111 0.0135933 0.00679665 0.999977i \(-0.497837\pi\)
0.00679665 + 0.999977i \(0.497837\pi\)
\(812\) 0 0
\(813\) −23.9612 −0.840355
\(814\) 0.235139 0.00824162
\(815\) −11.7852 −0.412816
\(816\) 6.05441 0.211947
\(817\) 12.5887 0.440424
\(818\) −0.791139 −0.0276615
\(819\) 0 0
\(820\) −4.58741 −0.160199
\(821\) −18.0266 −0.629134 −0.314567 0.949235i \(-0.601859\pi\)
−0.314567 + 0.949235i \(0.601859\pi\)
\(822\) −2.61886 −0.0913432
\(823\) −20.8871 −0.728078 −0.364039 0.931384i \(-0.618602\pi\)
−0.364039 + 0.931384i \(0.618602\pi\)
\(824\) 2.93317 0.102182
\(825\) 0.654678 0.0227930
\(826\) 0 0
\(827\) −21.7298 −0.755618 −0.377809 0.925884i \(-0.623322\pi\)
−0.377809 + 0.925884i \(0.623322\pi\)
\(828\) −5.78276 −0.200965
\(829\) 2.09893 0.0728988 0.0364494 0.999335i \(-0.488395\pi\)
0.0364494 + 0.999335i \(0.488395\pi\)
\(830\) −1.31883 −0.0457773
\(831\) 35.3018 1.22461
\(832\) −45.5949 −1.58072
\(833\) 0 0
\(834\) −1.70576 −0.0590655
\(835\) 12.1219 0.419496
\(836\) −2.29632 −0.0794199
\(837\) −5.55431 −0.191985
\(838\) −1.36783 −0.0472509
\(839\) −24.6440 −0.850804 −0.425402 0.905004i \(-0.639867\pi\)
−0.425402 + 0.905004i \(0.639867\pi\)
\(840\) 0 0
\(841\) 17.5768 0.606095
\(842\) 1.01725 0.0350567
\(843\) 22.5675 0.777266
\(844\) 8.40147 0.289190
\(845\) 20.9113 0.719369
\(846\) 0.295447 0.0101577
\(847\) 0 0
\(848\) −13.0669 −0.448718
\(849\) −42.8622 −1.47103
\(850\) 0.0823692 0.00282524
\(851\) −35.5408 −1.21832
\(852\) 41.1652 1.41030
\(853\) −17.3343 −0.593516 −0.296758 0.954953i \(-0.595905\pi\)
−0.296758 + 0.954953i \(0.595905\pi\)
\(854\) 0 0
\(855\) 1.50212 0.0513715
\(856\) 3.25811 0.111360
\(857\) −22.4285 −0.766142 −0.383071 0.923719i \(-0.625134\pi\)
−0.383071 + 0.923719i \(0.625134\pi\)
\(858\) −0.321627 −0.0109802
\(859\) 41.5321 1.41706 0.708529 0.705682i \(-0.249359\pi\)
0.708529 + 0.705682i \(0.249359\pi\)
\(860\) 9.09672 0.310195
\(861\) 0 0
\(862\) −1.49331 −0.0508625
\(863\) −27.0560 −0.920996 −0.460498 0.887661i \(-0.652329\pi\)
−0.460498 + 0.887661i \(0.652329\pi\)
\(864\) −5.59630 −0.190390
\(865\) 12.8633 0.437364
\(866\) 1.39560 0.0474245
\(867\) 25.1444 0.853950
\(868\) 0 0
\(869\) −6.08198 −0.206317
\(870\) −0.902181 −0.0305868
\(871\) 24.6823 0.836327
\(872\) −2.22685 −0.0754106
\(873\) −1.88078 −0.0636546
\(874\) −1.23954 −0.0419280
\(875\) 0 0
\(876\) −14.4910 −0.489604
\(877\) 10.3296 0.348804 0.174402 0.984675i \(-0.444201\pi\)
0.174402 + 0.984675i \(0.444201\pi\)
\(878\) −0.741172 −0.0250133
\(879\) 43.2785 1.45975
\(880\) −1.65339 −0.0557358
\(881\) −22.2743 −0.750439 −0.375219 0.926936i \(-0.622433\pi\)
−0.375219 + 0.926936i \(0.622433\pi\)
\(882\) 0 0
\(883\) −54.5504 −1.83577 −0.917883 0.396851i \(-0.870103\pi\)
−0.917883 + 0.396851i \(0.870103\pi\)
\(884\) 11.3309 0.381100
\(885\) 19.8201 0.666245
\(886\) 0.846579 0.0284414
\(887\) −38.6856 −1.29894 −0.649468 0.760389i \(-0.725009\pi\)
−0.649468 + 0.760389i \(0.725009\pi\)
\(888\) −3.52124 −0.118165
\(889\) 0 0
\(890\) 0.616208 0.0206554
\(891\) 2.95360 0.0989494
\(892\) 52.3333 1.75225
\(893\) −17.7329 −0.593409
\(894\) 2.11095 0.0706007
\(895\) 3.77080 0.126044
\(896\) 0 0
\(897\) 48.6133 1.62315
\(898\) 2.69464 0.0899212
\(899\) 6.82472 0.227617
\(900\) 1.08544 0.0361815
\(901\) 3.22388 0.107403
\(902\) 0.0811355 0.00270152
\(903\) 0 0
\(904\) −0.363469 −0.0120888
\(905\) −22.5985 −0.751200
\(906\) 2.58856 0.0859992
\(907\) 5.93151 0.196953 0.0984763 0.995139i \(-0.468603\pi\)
0.0984763 + 0.995139i \(0.468603\pi\)
\(908\) 13.2763 0.440590
\(909\) −2.80510 −0.0930394
\(910\) 0 0
\(911\) −7.33048 −0.242869 −0.121435 0.992599i \(-0.538750\pi\)
−0.121435 + 0.992599i \(0.538750\pi\)
\(912\) 17.1017 0.566294
\(913\) −6.53142 −0.216159
\(914\) −0.784843 −0.0259603
\(915\) 13.6063 0.449810
\(916\) 31.8806 1.05337
\(917\) 0 0
\(918\) 0.457504 0.0150999
\(919\) −18.8095 −0.620467 −0.310234 0.950660i \(-0.600407\pi\)
−0.310234 + 0.950660i \(0.600407\pi\)
\(920\) −1.79460 −0.0591662
\(921\) 11.0855 0.365278
\(922\) −1.23963 −0.0408249
\(923\) 76.7652 2.52676
\(924\) 0 0
\(925\) 6.67113 0.219345
\(926\) 2.74281 0.0901343
\(927\) −4.74268 −0.155770
\(928\) 6.87631 0.225726
\(929\) −22.0589 −0.723728 −0.361864 0.932231i \(-0.617860\pi\)
−0.361864 + 0.932231i \(0.617860\pi\)
\(930\) −0.132193 −0.00433479
\(931\) 0 0
\(932\) 11.0530 0.362052
\(933\) 39.2208 1.28403
\(934\) 3.39308 0.111025
\(935\) 0.407928 0.0133407
\(936\) −1.06841 −0.0349220
\(937\) −2.51705 −0.0822286 −0.0411143 0.999154i \(-0.513091\pi\)
−0.0411143 + 0.999154i \(0.513091\pi\)
\(938\) 0 0
\(939\) 24.1252 0.787296
\(940\) −12.8139 −0.417945
\(941\) −20.4311 −0.666035 −0.333018 0.942921i \(-0.608067\pi\)
−0.333018 + 0.942921i \(0.608067\pi\)
\(942\) −1.86365 −0.0607210
\(943\) −12.2635 −0.399354
\(944\) −50.0558 −1.62918
\(945\) 0 0
\(946\) −0.160890 −0.00523097
\(947\) −51.2849 −1.66653 −0.833267 0.552870i \(-0.813533\pi\)
−0.833267 + 0.552870i \(0.813533\pi\)
\(948\) 45.4580 1.47641
\(949\) −27.0229 −0.877199
\(950\) 0.232666 0.00754868
\(951\) −16.0865 −0.521642
\(952\) 0 0
\(953\) 34.3256 1.11192 0.555958 0.831210i \(-0.312352\pi\)
0.555958 + 0.831210i \(0.312352\pi\)
\(954\) −0.151721 −0.00491215
\(955\) −14.1765 −0.458741
\(956\) −53.0706 −1.71643
\(957\) −4.46799 −0.144430
\(958\) 2.63710 0.0852009
\(959\) 0 0
\(960\) 12.2688 0.395972
\(961\) 1.00000 0.0322581
\(962\) −3.27736 −0.105666
\(963\) −5.26807 −0.169761
\(964\) 39.3738 1.26814
\(965\) 17.5843 0.566059
\(966\) 0 0
\(967\) 12.7111 0.408761 0.204381 0.978892i \(-0.434482\pi\)
0.204381 + 0.978892i \(0.434482\pi\)
\(968\) −3.64658 −0.117205
\(969\) −4.21936 −0.135545
\(970\) −0.291316 −0.00935360
\(971\) 55.8634 1.79274 0.896371 0.443304i \(-0.146194\pi\)
0.896371 + 0.443304i \(0.146194\pi\)
\(972\) 11.1314 0.357040
\(973\) 0 0
\(974\) −2.42976 −0.0778546
\(975\) −9.12489 −0.292230
\(976\) −34.3628 −1.09993
\(977\) 23.9736 0.766985 0.383492 0.923544i \(-0.374721\pi\)
0.383492 + 0.923544i \(0.374721\pi\)
\(978\) −1.55792 −0.0498167
\(979\) 3.05173 0.0975337
\(980\) 0 0
\(981\) 3.60061 0.114959
\(982\) 2.84245 0.0907061
\(983\) −8.93690 −0.285043 −0.142521 0.989792i \(-0.545521\pi\)
−0.142521 + 0.989792i \(0.545521\pi\)
\(984\) −1.21501 −0.0387333
\(985\) 22.7485 0.724828
\(986\) −0.562147 −0.0179024
\(987\) 0 0
\(988\) 32.0061 1.01825
\(989\) 24.3182 0.773272
\(990\) −0.0191978 −0.000610145 0
\(991\) 7.07937 0.224884 0.112442 0.993658i \(-0.464133\pi\)
0.112442 + 0.993658i \(0.464133\pi\)
\(992\) 1.00756 0.0319901
\(993\) 4.62402 0.146739
\(994\) 0 0
\(995\) −12.0318 −0.381433
\(996\) 48.8173 1.54684
\(997\) −25.8069 −0.817314 −0.408657 0.912688i \(-0.634003\pi\)
−0.408657 + 0.912688i \(0.634003\pi\)
\(998\) 0.0418885 0.00132596
\(999\) 37.0536 1.17232
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7595.2.a.bf.1.12 21
7.3 odd 6 1085.2.j.d.156.10 42
7.5 odd 6 1085.2.j.d.466.10 yes 42
7.6 odd 2 7595.2.a.bg.1.12 21
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1085.2.j.d.156.10 42 7.3 odd 6
1085.2.j.d.466.10 yes 42 7.5 odd 6
7595.2.a.bf.1.12 21 1.1 even 1 trivial
7595.2.a.bg.1.12 21 7.6 odd 2