Properties

Label 756.4.bi
Level $756$
Weight $4$
Character orbit 756.bi
Rep. character $\chi_{756}(307,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $280$
Sturm bound $576$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 756.bi (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 252 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(576\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(756, [\chi])\).

Total New Old
Modular forms 888 296 592
Cusp forms 840 280 560
Eisenstein series 48 16 32

Trace form

\( 280 q + 2 q^{2} - 2 q^{4} + 8 q^{8} + 42 q^{14} - 2 q^{16} - 34 q^{22} + 3096 q^{25} - 132 q^{28} + 60 q^{29} + 752 q^{32} - 16 q^{37} - 1276 q^{44} - 40 q^{46} - 2 q^{49} + 340 q^{50} + 16 q^{53} - 1500 q^{56}+ \cdots - 4540 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(756, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(756, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(756, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 2}\)