Properties

Label 756.4.be
Level $756$
Weight $4$
Character orbit 756.be
Rep. character $\chi_{756}(107,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $384$
Sturm bound $576$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 756.be (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 84 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(576\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(756, [\chi])\).

Total New Old
Modular forms 888 384 504
Cusp forms 840 384 456
Eisenstein series 48 0 48

Trace form

\( 384 q + 72 q^{13} - 240 q^{16} - 348 q^{22} + 4884 q^{25} - 450 q^{28} + 504 q^{34} - 252 q^{37} - 246 q^{40} - 1410 q^{46} - 744 q^{49} + 354 q^{52} - 2964 q^{58} + 1080 q^{61} + 1188 q^{64} - 7158 q^{70}+ \cdots + 1032 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(756, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(756, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(756, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 2}\)