Defining parameters
| Level: | \( N \) | \(=\) | \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \) | 
| Weight: | \( k \) | \(=\) | \( 1 \) | 
| Character orbit: | \([\chi]\) | \(=\) | 756.c (of order \(2\) and degree \(1\)) | 
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) | 
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 0 \) | ||
| Sturm bound: | \(144\) | ||
| Trace bound: | \(0\) | 
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(756, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 20 | 0 | 20 | 
| Cusp forms | 2 | 0 | 2 | 
| Eisenstein series | 18 | 0 | 18 | 
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 0 | 0 | 0 | 0 | 
Decomposition of \(S_{1}^{\mathrm{old}}(756, [\chi])\) into lower level spaces
  \( S_{1}^{\mathrm{old}}(756, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 2}\)
            