Properties

Label 755.2.e.d.636.4
Level $755$
Weight $2$
Character 755.636
Analytic conductor $6.029$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [755,2,Mod(571,755)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(755, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("755.571"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 755 = 5 \cdot 151 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 755.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.02870535261\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 11x^{6} + 2x^{5} + 55x^{4} - 18x^{3} + 78x^{2} + 36x + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 636.4
Root \(-1.04092 - 1.80292i\) of defining polynomial
Character \(\chi\) \(=\) 755.636
Dual form 755.2.e.d.571.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +2.08183 q^{3} +(0.500000 - 0.866025i) q^{4} +(-0.500000 - 0.866025i) q^{5} +(1.04092 + 1.80292i) q^{6} +(0.716433 + 1.24090i) q^{7} +3.00000 q^{8} +1.33402 q^{9} +(0.500000 - 0.866025i) q^{10} +(1.46527 + 2.53793i) q^{11} +(1.04092 - 1.80292i) q^{12} +(-0.883443 + 1.53017i) q^{13} +(-0.716433 + 1.24090i) q^{14} +(-1.04092 - 1.80292i) q^{15} +(0.500000 + 0.866025i) q^{16} +(-2.36540 - 4.09699i) q^{17} +(0.667010 + 1.15530i) q^{18} +6.28158 q^{19} -1.00000 q^{20} +(1.49149 + 2.58334i) q^{21} +(-1.46527 + 2.53793i) q^{22} +(0.400124 + 0.693034i) q^{23} +6.24549 q^{24} +(-0.500000 + 0.866025i) q^{25} -1.76689 q^{26} -3.46829 q^{27} +1.43287 q^{28} -3.98299 q^{29} +(1.04092 - 1.80292i) q^{30} +(-4.17320 - 7.22819i) q^{31} +(2.50000 - 4.33013i) q^{32} +(3.05045 + 5.28354i) q^{33} +(2.36540 - 4.09699i) q^{34} +(0.716433 - 1.24090i) q^{35} +(0.667010 - 1.15530i) q^{36} +(4.79826 + 8.31084i) q^{37} +(3.14079 + 5.44001i) q^{38} +(-1.83918 + 3.18555i) q^{39} +(-1.50000 - 2.59808i) q^{40} -2.51470 q^{41} +(-1.49149 + 2.58334i) q^{42} +(-2.52424 + 4.37210i) q^{43} +2.93055 q^{44} +(-0.667010 - 1.15530i) q^{45} +(-0.400124 + 0.693034i) q^{46} +(5.04711 - 8.74184i) q^{47} +(1.04092 + 1.80292i) q^{48} +(2.47345 - 4.28414i) q^{49} -1.00000 q^{50} +(-4.92436 - 8.52924i) q^{51} +(0.883443 + 1.53017i) q^{52} +11.4452 q^{53} +(-1.73414 - 3.00363i) q^{54} +(1.46527 - 2.53793i) q^{55} +(2.14930 + 3.72270i) q^{56} +13.0772 q^{57} +(-1.99149 - 3.44937i) q^{58} -12.9620 q^{59} -2.08183 q^{60} +(-6.56482 + 11.3706i) q^{61} +(4.17320 - 7.22819i) q^{62} +(0.955736 + 1.65538i) q^{63} +7.00000 q^{64} +1.76689 q^{65} +(-3.05045 + 5.28354i) q^{66} -10.4977 q^{67} -4.73080 q^{68} +(0.832990 + 1.44278i) q^{69} +1.43287 q^{70} +(-2.38344 + 4.12824i) q^{71} +4.00206 q^{72} -10.8441 q^{73} +(-4.79826 + 8.31084i) q^{74} +(-1.04092 + 1.80292i) q^{75} +(3.14079 - 5.44001i) q^{76} +(-2.09954 + 3.63651i) q^{77} -3.67836 q^{78} -8.89719 q^{79} +(0.500000 - 0.866025i) q^{80} -11.2225 q^{81} +(-1.25735 - 2.17779i) q^{82} -1.25013 q^{83} +2.98299 q^{84} +(-2.36540 + 4.09699i) q^{85} -5.04847 q^{86} -8.29190 q^{87} +(4.39582 + 7.61379i) q^{88} +(3.76354 - 6.51864i) q^{89} +(0.667010 - 1.15530i) q^{90} -2.53171 q^{91} +0.800247 q^{92} +(-8.68790 - 15.0479i) q^{93} +10.0942 q^{94} +(-3.14079 - 5.44001i) q^{95} +(5.20458 - 9.01459i) q^{96} +(-2.55896 - 4.43225i) q^{97} +4.94689 q^{98} +(1.95471 + 3.38565i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 4 q^{3} + 4 q^{4} - 4 q^{5} - 2 q^{6} + 3 q^{7} + 24 q^{8} + 12 q^{9} + 4 q^{10} - 11 q^{11} - 2 q^{12} - 5 q^{13} - 3 q^{14} + 2 q^{15} + 4 q^{16} - q^{17} + 6 q^{18} + 20 q^{19} - 8 q^{20}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/755\mathbb{Z}\right)^\times\).

\(n\) \(6\) \(152\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i 0.986869 0.161521i \(-0.0516399\pi\)
−0.633316 + 0.773893i \(0.718307\pi\)
\(3\) 2.08183 1.20195 0.600973 0.799269i \(-0.294780\pi\)
0.600973 + 0.799269i \(0.294780\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 1.04092 + 1.80292i 0.424952 + 0.736038i
\(7\) 0.716433 + 1.24090i 0.270786 + 0.469016i 0.969063 0.246812i \(-0.0793830\pi\)
−0.698277 + 0.715828i \(0.746050\pi\)
\(8\) 3.00000 1.06066
\(9\) 1.33402 0.444673
\(10\) 0.500000 0.866025i 0.158114 0.273861i
\(11\) 1.46527 + 2.53793i 0.441797 + 0.765215i 0.997823 0.0659503i \(-0.0210079\pi\)
−0.556026 + 0.831165i \(0.687675\pi\)
\(12\) 1.04092 1.80292i 0.300486 0.520458i
\(13\) −0.883443 + 1.53017i −0.245023 + 0.424392i −0.962138 0.272562i \(-0.912129\pi\)
0.717115 + 0.696955i \(0.245462\pi\)
\(14\) −0.716433 + 1.24090i −0.191475 + 0.331644i
\(15\) −1.04092 1.80292i −0.268763 0.465512i
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) −2.36540 4.09699i −0.573693 0.993666i −0.996182 0.0872978i \(-0.972177\pi\)
0.422489 0.906368i \(-0.361157\pi\)
\(18\) 0.667010 + 1.15530i 0.157216 + 0.272306i
\(19\) 6.28158 1.44109 0.720547 0.693406i \(-0.243891\pi\)
0.720547 + 0.693406i \(0.243891\pi\)
\(20\) −1.00000 −0.223607
\(21\) 1.49149 + 2.58334i 0.325470 + 0.563731i
\(22\) −1.46527 + 2.53793i −0.312398 + 0.541088i
\(23\) 0.400124 + 0.693034i 0.0834315 + 0.144508i 0.904722 0.426003i \(-0.140079\pi\)
−0.821290 + 0.570511i \(0.806745\pi\)
\(24\) 6.24549 1.27486
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −1.76689 −0.346515
\(27\) −3.46829 −0.667472
\(28\) 1.43287 0.270786
\(29\) −3.98299 −0.739622 −0.369811 0.929107i \(-0.620578\pi\)
−0.369811 + 0.929107i \(0.620578\pi\)
\(30\) 1.04092 1.80292i 0.190044 0.329166i
\(31\) −4.17320 7.22819i −0.749529 1.29822i −0.948049 0.318125i \(-0.896947\pi\)
0.198520 0.980097i \(-0.436387\pi\)
\(32\) 2.50000 4.33013i 0.441942 0.765466i
\(33\) 3.05045 + 5.28354i 0.531016 + 0.919746i
\(34\) 2.36540 4.09699i 0.405662 0.702628i
\(35\) 0.716433 1.24090i 0.121099 0.209750i
\(36\) 0.667010 1.15530i 0.111168 0.192549i
\(37\) 4.79826 + 8.31084i 0.788830 + 1.36629i 0.926684 + 0.375841i \(0.122646\pi\)
−0.137855 + 0.990452i \(0.544021\pi\)
\(38\) 3.14079 + 5.44001i 0.509504 + 0.882486i
\(39\) −1.83918 + 3.18555i −0.294504 + 0.510097i
\(40\) −1.50000 2.59808i −0.237171 0.410792i
\(41\) −2.51470 −0.392730 −0.196365 0.980531i \(-0.562914\pi\)
−0.196365 + 0.980531i \(0.562914\pi\)
\(42\) −1.49149 + 2.58334i −0.230142 + 0.398618i
\(43\) −2.52424 + 4.37210i −0.384942 + 0.666740i −0.991761 0.128101i \(-0.959112\pi\)
0.606819 + 0.794840i \(0.292445\pi\)
\(44\) 2.93055 0.441797
\(45\) −0.667010 1.15530i −0.0994320 0.172221i
\(46\) −0.400124 + 0.693034i −0.0589950 + 0.102182i
\(47\) 5.04711 8.74184i 0.736196 1.27513i −0.218001 0.975949i \(-0.569953\pi\)
0.954197 0.299180i \(-0.0967132\pi\)
\(48\) 1.04092 + 1.80292i 0.150243 + 0.260229i
\(49\) 2.47345 4.28414i 0.353350 0.612019i
\(50\) −1.00000 −0.141421
\(51\) −4.92436 8.52924i −0.689548 1.19433i
\(52\) 0.883443 + 1.53017i 0.122512 + 0.212196i
\(53\) 11.4452 1.57213 0.786063 0.618147i \(-0.212116\pi\)
0.786063 + 0.618147i \(0.212116\pi\)
\(54\) −1.73414 3.00363i −0.235987 0.408742i
\(55\) 1.46527 2.53793i 0.197578 0.342214i
\(56\) 2.14930 + 3.72270i 0.287212 + 0.497466i
\(57\) 13.0772 1.73212
\(58\) −1.99149 3.44937i −0.261496 0.452924i
\(59\) −12.9620 −1.68751 −0.843755 0.536729i \(-0.819660\pi\)
−0.843755 + 0.536729i \(0.819660\pi\)
\(60\) −2.08183 −0.268763
\(61\) −6.56482 + 11.3706i −0.840539 + 1.45586i 0.0489014 + 0.998804i \(0.484428\pi\)
−0.889440 + 0.457052i \(0.848905\pi\)
\(62\) 4.17320 7.22819i 0.529997 0.917982i
\(63\) 0.955736 + 1.65538i 0.120411 + 0.208559i
\(64\) 7.00000 0.875000
\(65\) 1.76689 0.219155
\(66\) −3.05045 + 5.28354i −0.375485 + 0.650359i
\(67\) −10.4977 −1.28250 −0.641248 0.767334i \(-0.721583\pi\)
−0.641248 + 0.767334i \(0.721583\pi\)
\(68\) −4.73080 −0.573693
\(69\) 0.832990 + 1.44278i 0.100280 + 0.173690i
\(70\) 1.43287 0.171260
\(71\) −2.38344 + 4.12824i −0.282863 + 0.489933i −0.972089 0.234614i \(-0.924617\pi\)
0.689226 + 0.724546i \(0.257951\pi\)
\(72\) 4.00206 0.471647
\(73\) −10.8441 −1.26920 −0.634602 0.772839i \(-0.718836\pi\)
−0.634602 + 0.772839i \(0.718836\pi\)
\(74\) −4.79826 + 8.31084i −0.557787 + 0.966115i
\(75\) −1.04092 + 1.80292i −0.120195 + 0.208183i
\(76\) 3.14079 5.44001i 0.360274 0.624012i
\(77\) −2.09954 + 3.63651i −0.239265 + 0.414419i
\(78\) −3.67836 −0.416492
\(79\) −8.89719 −1.00101 −0.500506 0.865733i \(-0.666853\pi\)
−0.500506 + 0.865733i \(0.666853\pi\)
\(80\) 0.500000 0.866025i 0.0559017 0.0968246i
\(81\) −11.2225 −1.24694
\(82\) −1.25735 2.17779i −0.138851 0.240497i
\(83\) −1.25013 −0.137219 −0.0686097 0.997644i \(-0.521856\pi\)
−0.0686097 + 0.997644i \(0.521856\pi\)
\(84\) 2.98299 0.325470
\(85\) −2.36540 + 4.09699i −0.256563 + 0.444381i
\(86\) −5.04847 −0.544391
\(87\) −8.29190 −0.888985
\(88\) 4.39582 + 7.61379i 0.468596 + 0.811633i
\(89\) 3.76354 6.51864i 0.398934 0.690974i −0.594660 0.803977i \(-0.702713\pi\)
0.993595 + 0.113003i \(0.0360468\pi\)
\(90\) 0.667010 1.15530i 0.0703090 0.121779i
\(91\) −2.53171 −0.265396
\(92\) 0.800247 0.0834315
\(93\) −8.68790 15.0479i −0.900893 1.56039i
\(94\) 10.0942 1.04114
\(95\) −3.14079 5.44001i −0.322238 0.558133i
\(96\) 5.20458 9.01459i 0.531190 0.920048i
\(97\) −2.55896 4.43225i −0.259823 0.450027i 0.706371 0.707842i \(-0.250331\pi\)
−0.966194 + 0.257815i \(0.916998\pi\)
\(98\) 4.94689 0.499712
\(99\) 1.95471 + 3.38565i 0.196455 + 0.340271i
\(100\) 0.500000 + 0.866025i 0.0500000 + 0.0866025i
\(101\) 5.98299 0.595329 0.297665 0.954670i \(-0.403792\pi\)
0.297665 + 0.954670i \(0.403792\pi\)
\(102\) 4.92436 8.52924i 0.487584 0.844521i
\(103\) 6.48814 + 11.2378i 0.639296 + 1.10729i 0.985588 + 0.169166i \(0.0541074\pi\)
−0.346292 + 0.938127i \(0.612559\pi\)
\(104\) −2.65033 + 4.59051i −0.259886 + 0.450136i
\(105\) 1.49149 2.58334i 0.145555 0.252108i
\(106\) 5.72262 + 9.91187i 0.555830 + 0.962726i
\(107\) −9.69471 −0.937223 −0.468611 0.883404i \(-0.655245\pi\)
−0.468611 + 0.883404i \(0.655245\pi\)
\(108\) −1.73414 + 3.00363i −0.166868 + 0.289024i
\(109\) −6.34769 + 10.9945i −0.607998 + 1.05308i 0.383572 + 0.923511i \(0.374694\pi\)
−0.991570 + 0.129573i \(0.958639\pi\)
\(110\) 2.93055 0.279417
\(111\) 9.98918 + 17.3018i 0.948131 + 1.64221i
\(112\) −0.716433 + 1.24090i −0.0676966 + 0.117254i
\(113\) 4.18137 + 7.24235i 0.393350 + 0.681303i 0.992889 0.119043i \(-0.0379826\pi\)
−0.599539 + 0.800346i \(0.704649\pi\)
\(114\) 6.53860 + 11.3252i 0.612396 + 1.06070i
\(115\) 0.400124 0.693034i 0.0373117 0.0646258i
\(116\) −1.99149 + 3.44937i −0.184905 + 0.320266i
\(117\) −1.17853 + 2.04128i −0.108955 + 0.188716i
\(118\) −6.48100 11.2254i −0.596625 1.03338i
\(119\) 3.38930 5.87044i 0.310696 0.538142i
\(120\) −3.12275 5.40876i −0.285066 0.493750i
\(121\) 1.20594 2.08875i 0.109631 0.189887i
\(122\) −13.1296 −1.18870
\(123\) −5.23517 −0.472040
\(124\) −8.34640 −0.749529
\(125\) 1.00000 0.0894427
\(126\) −0.955736 + 1.65538i −0.0851438 + 0.147473i
\(127\) 22.4570 1.99273 0.996366 0.0851712i \(-0.0271437\pi\)
0.996366 + 0.0851712i \(0.0271437\pi\)
\(128\) −1.50000 2.59808i −0.132583 0.229640i
\(129\) −5.25503 + 9.10198i −0.462680 + 0.801385i
\(130\) 0.883443 + 1.53017i 0.0774831 + 0.134205i
\(131\) −10.3607 −0.905217 −0.452609 0.891709i \(-0.649507\pi\)
−0.452609 + 0.891709i \(0.649507\pi\)
\(132\) 6.10091 0.531016
\(133\) 4.50033 + 7.79481i 0.390228 + 0.675896i
\(134\) −5.24884 9.09126i −0.453431 0.785365i
\(135\) 1.73414 + 3.00363i 0.149251 + 0.258511i
\(136\) −7.09619 12.2910i −0.608494 1.05394i
\(137\) 1.05793 1.83239i 0.0903851 0.156552i −0.817288 0.576229i \(-0.804524\pi\)
0.907673 + 0.419678i \(0.137857\pi\)
\(138\) −0.832990 + 1.44278i −0.0709088 + 0.122818i
\(139\) −10.4020 + 18.0168i −0.882287 + 1.52817i −0.0334955 + 0.999439i \(0.510664\pi\)
−0.848792 + 0.528727i \(0.822669\pi\)
\(140\) −0.716433 1.24090i −0.0605496 0.104875i
\(141\) 10.5072 18.1990i 0.884868 1.53264i
\(142\) −4.76689 −0.400028
\(143\) −5.17795 −0.433002
\(144\) 0.667010 + 1.15530i 0.0555842 + 0.0962746i
\(145\) 1.99149 + 3.44937i 0.165384 + 0.286454i
\(146\) −5.42204 9.39125i −0.448731 0.777225i
\(147\) 5.14930 8.91885i 0.424707 0.735614i
\(148\) 9.59653 0.788830
\(149\) −0.759666 1.31578i −0.0622343 0.107793i 0.833230 0.552927i \(-0.186489\pi\)
−0.895464 + 0.445134i \(0.853156\pi\)
\(150\) −2.08183 −0.169981
\(151\) 12.1112 2.07803i 0.985598 0.169108i
\(152\) 18.8448 1.52851
\(153\) −3.15549 5.46547i −0.255106 0.441857i
\(154\) −4.19908 −0.338372
\(155\) −4.17320 + 7.22819i −0.335199 + 0.580583i
\(156\) 1.83918 + 3.18555i 0.147252 + 0.255048i
\(157\) −5.64278 9.77357i −0.450342 0.780016i 0.548065 0.836436i \(-0.315365\pi\)
−0.998407 + 0.0564199i \(0.982031\pi\)
\(158\) −4.44859 7.70519i −0.353911 0.612992i
\(159\) 23.8271 1.88961
\(160\) −5.00000 −0.395285
\(161\) −0.573324 + 0.993026i −0.0451842 + 0.0782614i
\(162\) −5.61123 9.71893i −0.440860 0.763591i
\(163\) 2.24748 3.89274i 0.176036 0.304903i −0.764483 0.644643i \(-0.777006\pi\)
0.940519 + 0.339740i \(0.110339\pi\)
\(164\) −1.25735 + 2.17779i −0.0981824 + 0.170057i
\(165\) 3.05045 5.28354i 0.237477 0.411323i
\(166\) −0.625064 1.08264i −0.0485144 0.0840294i
\(167\) −8.81598 15.2697i −0.682201 1.18161i −0.974308 0.225221i \(-0.927690\pi\)
0.292107 0.956386i \(-0.405644\pi\)
\(168\) 4.47448 + 7.75002i 0.345213 + 0.597927i
\(169\) 4.93906 + 8.55470i 0.379927 + 0.658054i
\(170\) −4.73080 −0.362835
\(171\) 8.37976 0.640816
\(172\) 2.52424 + 4.37210i 0.192471 + 0.333370i
\(173\) −0.901154 + 1.56084i −0.0685135 + 0.118669i −0.898247 0.439491i \(-0.855159\pi\)
0.829734 + 0.558160i \(0.188492\pi\)
\(174\) −4.14595 7.18100i −0.314304 0.544390i
\(175\) −1.43287 −0.108315
\(176\) −1.46527 + 2.53793i −0.110449 + 0.191304i
\(177\) −26.9847 −2.02829
\(178\) 7.52708 0.564178
\(179\) −4.96391 −0.371020 −0.185510 0.982642i \(-0.559394\pi\)
−0.185510 + 0.982642i \(0.559394\pi\)
\(180\) −1.33402 −0.0994320
\(181\) 5.40400 9.36000i 0.401676 0.695723i −0.592252 0.805752i \(-0.701761\pi\)
0.993928 + 0.110029i \(0.0350945\pi\)
\(182\) −1.26586 2.19253i −0.0938315 0.162521i
\(183\) −13.6668 + 23.6717i −1.01028 + 1.74986i
\(184\) 1.20037 + 2.07910i 0.0884925 + 0.153274i
\(185\) 4.79826 8.31084i 0.352775 0.611025i
\(186\) 8.68790 15.0479i 0.637028 1.10336i
\(187\) 6.93191 12.0064i 0.506912 0.877997i
\(188\) −5.04711 8.74184i −0.368098 0.637564i
\(189\) −2.48480 4.30379i −0.180742 0.313055i
\(190\) 3.14079 5.44001i 0.227857 0.394660i
\(191\) −11.0543 19.1467i −0.799863 1.38540i −0.919705 0.392610i \(-0.871572\pi\)
0.119842 0.992793i \(-0.461761\pi\)
\(192\) 14.5728 1.05170
\(193\) 4.62378 8.00862i 0.332827 0.576473i −0.650238 0.759730i \(-0.725331\pi\)
0.983065 + 0.183258i \(0.0586642\pi\)
\(194\) 2.55896 4.43225i 0.183723 0.318217i
\(195\) 3.67836 0.263413
\(196\) −2.47345 4.28414i −0.176675 0.306010i
\(197\) −6.32113 + 10.9485i −0.450362 + 0.780050i −0.998408 0.0563979i \(-0.982038\pi\)
0.548046 + 0.836448i \(0.315372\pi\)
\(198\) −1.95471 + 3.38565i −0.138915 + 0.240608i
\(199\) −3.99905 6.92655i −0.283485 0.491010i 0.688756 0.724994i \(-0.258157\pi\)
−0.972241 + 0.233983i \(0.924824\pi\)
\(200\) −1.50000 + 2.59808i −0.106066 + 0.183712i
\(201\) −21.8544 −1.54149
\(202\) 2.99149 + 5.18142i 0.210481 + 0.364563i
\(203\) −2.85354 4.94248i −0.200279 0.346894i
\(204\) −9.84872 −0.689548
\(205\) 1.25735 + 2.17779i 0.0878170 + 0.152104i
\(206\) −6.48814 + 11.2378i −0.452050 + 0.782974i
\(207\) 0.533773 + 0.924522i 0.0370998 + 0.0642587i
\(208\) −1.76689 −0.122512
\(209\) 9.20424 + 15.9422i 0.636671 + 1.10275i
\(210\) 2.98299 0.205846
\(211\) 8.34573 0.574544 0.287272 0.957849i \(-0.407252\pi\)
0.287272 + 0.957849i \(0.407252\pi\)
\(212\) 5.72262 9.91187i 0.393031 0.680750i
\(213\) −4.96193 + 8.59431i −0.339986 + 0.588872i
\(214\) −4.84735 8.39586i −0.331358 0.573929i
\(215\) 5.04847 0.344303
\(216\) −10.4049 −0.707961
\(217\) 5.97964 10.3570i 0.405924 0.703081i
\(218\) −12.6954 −0.859839
\(219\) −22.5755 −1.52551
\(220\) −1.46527 2.53793i −0.0987888 0.171107i
\(221\) 8.35878 0.562272
\(222\) −9.98918 + 17.3018i −0.670430 + 1.16122i
\(223\) 4.23038 0.283287 0.141644 0.989918i \(-0.454761\pi\)
0.141644 + 0.989918i \(0.454761\pi\)
\(224\) 7.16433 0.478687
\(225\) −0.667010 + 1.15530i −0.0444673 + 0.0770197i
\(226\) −4.18137 + 7.24235i −0.278141 + 0.481754i
\(227\) 11.1447 19.3031i 0.739697 1.28119i −0.212934 0.977067i \(-0.568302\pi\)
0.952632 0.304127i \(-0.0983647\pi\)
\(228\) 6.53860 11.3252i 0.433029 0.750029i
\(229\) 21.7413 1.43670 0.718352 0.695680i \(-0.244897\pi\)
0.718352 + 0.695680i \(0.244897\pi\)
\(230\) 0.800247 0.0527667
\(231\) −4.37089 + 7.57061i −0.287584 + 0.498109i
\(232\) −11.9490 −0.784487
\(233\) 3.25503 + 5.63788i 0.213244 + 0.369350i 0.952728 0.303825i \(-0.0982637\pi\)
−0.739484 + 0.673174i \(0.764930\pi\)
\(234\) −2.35706 −0.154086
\(235\) −10.0942 −0.658474
\(236\) −6.48100 + 11.2254i −0.421877 + 0.730713i
\(237\) −18.5224 −1.20316
\(238\) 6.77860 0.439391
\(239\) −0.0327425 0.0567117i −0.00211794 0.00366838i 0.864964 0.501833i \(-0.167341\pi\)
−0.867082 + 0.498165i \(0.834007\pi\)
\(240\) 1.04092 1.80292i 0.0671908 0.116378i
\(241\) −4.50490 + 7.80272i −0.290186 + 0.502617i −0.973854 0.227176i \(-0.927051\pi\)
0.683667 + 0.729794i \(0.260384\pi\)
\(242\) 2.41189 0.155042
\(243\) −12.9584 −0.831281
\(244\) 6.56482 + 11.3706i 0.420269 + 0.727928i
\(245\) −4.94689 −0.316045
\(246\) −2.61759 4.53379i −0.166891 0.289064i
\(247\) −5.54942 + 9.61188i −0.353101 + 0.611589i
\(248\) −12.5196 21.6846i −0.794995 1.37697i
\(249\) −2.60256 −0.164930
\(250\) 0.500000 + 0.866025i 0.0316228 + 0.0547723i
\(251\) 7.90400 + 13.6901i 0.498896 + 0.864113i 0.999999 0.00127456i \(-0.000405704\pi\)
−0.501103 + 0.865387i \(0.667072\pi\)
\(252\) 1.91147 0.120411
\(253\) −1.17258 + 2.03097i −0.0737196 + 0.127686i
\(254\) 11.2285 + 19.4483i 0.704537 + 1.22029i
\(255\) −4.92436 + 8.52924i −0.308375 + 0.534122i
\(256\) 8.50000 14.7224i 0.531250 0.920152i
\(257\) −9.78744 16.9523i −0.610524 1.05746i −0.991152 0.132730i \(-0.957626\pi\)
0.380629 0.924728i \(-0.375708\pi\)
\(258\) −10.5101 −0.654328
\(259\) −6.87527 + 11.9083i −0.427209 + 0.739947i
\(260\) 0.883443 1.53017i 0.0547888 0.0948970i
\(261\) −5.31338 −0.328890
\(262\) −5.18034 8.97262i −0.320043 0.554330i
\(263\) 10.1624 17.6017i 0.626639 1.08537i −0.361583 0.932340i \(-0.617763\pi\)
0.988221 0.153030i \(-0.0489032\pi\)
\(264\) 9.15136 + 15.8506i 0.563227 + 0.975538i
\(265\) −5.72262 9.91187i −0.351538 0.608882i
\(266\) −4.50033 + 7.79481i −0.275933 + 0.477930i
\(267\) 7.83505 13.5707i 0.479497 0.830514i
\(268\) −5.24884 + 9.09126i −0.320624 + 0.555337i
\(269\) −2.86676 4.96538i −0.174790 0.302745i 0.765299 0.643675i \(-0.222591\pi\)
−0.940088 + 0.340931i \(0.889258\pi\)
\(270\) −1.73414 + 3.00363i −0.105537 + 0.182795i
\(271\) 16.3168 + 28.2616i 0.991177 + 1.71677i 0.610375 + 0.792112i \(0.291019\pi\)
0.380802 + 0.924657i \(0.375648\pi\)
\(272\) 2.36540 4.09699i 0.143423 0.248416i
\(273\) −5.27060 −0.318991
\(274\) 2.11586 0.127824
\(275\) −2.93055 −0.176719
\(276\) 1.66598 0.100280
\(277\) −4.90665 + 8.49856i −0.294812 + 0.510629i −0.974941 0.222463i \(-0.928590\pi\)
0.680129 + 0.733092i \(0.261924\pi\)
\(278\) −20.8040 −1.24774
\(279\) −5.56713 9.64256i −0.333296 0.577285i
\(280\) 2.14930 3.72270i 0.128445 0.222474i
\(281\) −7.43055 12.8701i −0.443269 0.767765i 0.554660 0.832077i \(-0.312848\pi\)
−0.997930 + 0.0643117i \(0.979515\pi\)
\(282\) 21.0144 1.25139
\(283\) 20.7105 1.23111 0.615555 0.788094i \(-0.288932\pi\)
0.615555 + 0.788094i \(0.288932\pi\)
\(284\) 2.38344 + 4.12824i 0.141431 + 0.244966i
\(285\) −6.53860 11.3252i −0.387313 0.670846i
\(286\) −2.58897 4.48423i −0.153089 0.265158i
\(287\) −1.80161 3.12048i −0.106346 0.184196i
\(288\) 3.33505 5.77648i 0.196520 0.340382i
\(289\) −2.69021 + 4.65959i −0.158248 + 0.274093i
\(290\) −1.99149 + 3.44937i −0.116944 + 0.202554i
\(291\) −5.32732 9.22720i −0.312293 0.540908i
\(292\) −5.42204 + 9.39125i −0.317301 + 0.549581i
\(293\) 24.2797 1.41843 0.709217 0.704990i \(-0.249049\pi\)
0.709217 + 0.704990i \(0.249049\pi\)
\(294\) 10.2986 0.600626
\(295\) 6.48100 + 11.2254i 0.377339 + 0.653570i
\(296\) 14.3948 + 24.9325i 0.836680 + 1.44917i
\(297\) −5.08199 8.80227i −0.294887 0.510760i
\(298\) 0.759666 1.31578i 0.0440063 0.0762211i
\(299\) −1.41395 −0.0817706
\(300\) 1.04092 + 1.80292i 0.0600973 + 0.104092i
\(301\) −7.23378 −0.416948
\(302\) 7.85524 + 9.44961i 0.452018 + 0.543764i
\(303\) 12.4556 0.715553
\(304\) 3.14079 + 5.44001i 0.180137 + 0.312006i
\(305\) 13.1296 0.751801
\(306\) 3.15549 5.46547i 0.180387 0.312440i
\(307\) −1.03344 1.78997i −0.0589815 0.102159i 0.835027 0.550209i \(-0.185452\pi\)
−0.894008 + 0.448050i \(0.852119\pi\)
\(308\) 2.09954 + 3.63651i 0.119633 + 0.207210i
\(309\) 13.5072 + 23.3952i 0.768399 + 1.33091i
\(310\) −8.34640 −0.474044
\(311\) 27.4066 1.55408 0.777042 0.629448i \(-0.216719\pi\)
0.777042 + 0.629448i \(0.216719\pi\)
\(312\) −5.51754 + 9.55666i −0.312369 + 0.541039i
\(313\) 2.16701 + 3.75337i 0.122487 + 0.212153i 0.920748 0.390159i \(-0.127580\pi\)
−0.798261 + 0.602312i \(0.794246\pi\)
\(314\) 5.64278 9.77357i 0.318440 0.551555i
\(315\) 0.955736 1.65538i 0.0538496 0.0932703i
\(316\) −4.44859 + 7.70519i −0.250253 + 0.433451i
\(317\) −1.64149 2.84314i −0.0921952 0.159687i 0.816239 0.577714i \(-0.196055\pi\)
−0.908435 + 0.418027i \(0.862722\pi\)
\(318\) 11.9135 + 20.6348i 0.668078 + 1.15714i
\(319\) −5.83617 10.1085i −0.326763 0.565969i
\(320\) −3.50000 6.06218i −0.195656 0.338886i
\(321\) −20.1827 −1.12649
\(322\) −1.14665 −0.0639002
\(323\) −14.8584 25.7356i −0.826746 1.43197i
\(324\) −5.61123 + 9.71893i −0.311735 + 0.539940i
\(325\) −0.883443 1.53017i −0.0490046 0.0848785i
\(326\) 4.49495 0.248952
\(327\) −13.2148 + 22.8887i −0.730781 + 1.26575i
\(328\) −7.54409 −0.416553
\(329\) 14.4637 0.797407
\(330\) 6.10091 0.335844
\(331\) 1.64122 0.0902096 0.0451048 0.998982i \(-0.485638\pi\)
0.0451048 + 0.998982i \(0.485638\pi\)
\(332\) −0.625064 + 1.08264i −0.0343048 + 0.0594177i
\(333\) 6.40098 + 11.0868i 0.350772 + 0.607554i
\(334\) 8.81598 15.2697i 0.482389 0.835522i
\(335\) 5.24884 + 9.09126i 0.286775 + 0.496709i
\(336\) −1.49149 + 2.58334i −0.0813676 + 0.140933i
\(337\) 5.12146 8.87063i 0.278984 0.483214i −0.692149 0.721755i \(-0.743336\pi\)
0.971132 + 0.238541i \(0.0766691\pi\)
\(338\) −4.93906 + 8.55470i −0.268649 + 0.465314i
\(339\) 8.70491 + 15.0773i 0.472786 + 0.818889i
\(340\) 2.36540 + 4.09699i 0.128282 + 0.222190i
\(341\) 12.2298 21.1826i 0.662279 1.14710i
\(342\) 4.18988 + 7.25709i 0.226563 + 0.392418i
\(343\) 17.1183 0.924301
\(344\) −7.57271 + 13.1163i −0.408293 + 0.707184i
\(345\) 0.832990 1.44278i 0.0448467 0.0776767i
\(346\) −1.80231 −0.0968927
\(347\) −6.61354 11.4550i −0.355034 0.614936i 0.632090 0.774895i \(-0.282197\pi\)
−0.987124 + 0.159959i \(0.948864\pi\)
\(348\) −4.14595 + 7.18100i −0.222246 + 0.384942i
\(349\) 0.593687 1.02830i 0.0317793 0.0550434i −0.849698 0.527269i \(-0.823216\pi\)
0.881478 + 0.472226i \(0.156549\pi\)
\(350\) −0.716433 1.24090i −0.0382950 0.0663288i
\(351\) 3.06404 5.30707i 0.163546 0.283270i
\(352\) 14.6527 0.780994
\(353\) 6.54280 + 11.3325i 0.348238 + 0.603167i 0.985937 0.167120i \(-0.0534467\pi\)
−0.637698 + 0.770286i \(0.720113\pi\)
\(354\) −13.4924 23.3694i −0.717110 1.24207i
\(355\) 4.76689 0.253000
\(356\) −3.76354 6.51864i −0.199467 0.345487i
\(357\) 7.05595 12.2213i 0.373440 0.646818i
\(358\) −2.48195 4.29887i −0.131175 0.227202i
\(359\) −31.8716 −1.68212 −0.841059 0.540944i \(-0.818067\pi\)
−0.841059 + 0.540944i \(0.818067\pi\)
\(360\) −2.00103 3.46589i −0.105464 0.182668i
\(361\) 20.4583 1.07675
\(362\) 10.8080 0.568055
\(363\) 2.51057 4.34843i 0.131771 0.228234i
\(364\) −1.26586 + 2.19253i −0.0663489 + 0.114920i
\(365\) 5.42204 + 9.39125i 0.283803 + 0.491561i
\(366\) −27.3337 −1.42875
\(367\) 0.134936 0.00704363 0.00352181 0.999994i \(-0.498879\pi\)
0.00352181 + 0.999994i \(0.498879\pi\)
\(368\) −0.400124 + 0.693034i −0.0208579 + 0.0361269i
\(369\) −3.35466 −0.174636
\(370\) 9.59653 0.498900
\(371\) 8.19975 + 14.2024i 0.425710 + 0.737351i
\(372\) −17.3758 −0.900893
\(373\) −14.0690 + 24.3683i −0.728466 + 1.26174i 0.229065 + 0.973411i \(0.426433\pi\)
−0.957531 + 0.288330i \(0.906900\pi\)
\(374\) 13.8638 0.716881
\(375\) 2.08183 0.107505
\(376\) 15.1413 26.2255i 0.780854 1.35248i
\(377\) 3.51874 6.09464i 0.181224 0.313890i
\(378\) 2.48480 4.30379i 0.127804 0.221363i
\(379\) −16.2118 + 28.0797i −0.832744 + 1.44236i 0.0631099 + 0.998007i \(0.479898\pi\)
−0.895854 + 0.444349i \(0.853435\pi\)
\(380\) −6.28158 −0.322238
\(381\) 46.7516 2.39516
\(382\) 11.0543 19.1467i 0.565589 0.979628i
\(383\) 34.1951 1.74729 0.873644 0.486565i \(-0.161750\pi\)
0.873644 + 0.486565i \(0.161750\pi\)
\(384\) −3.12275 5.40876i −0.159357 0.276014i
\(385\) 4.19908 0.214005
\(386\) 9.24755 0.470688
\(387\) −3.36738 + 5.83248i −0.171174 + 0.296481i
\(388\) −5.11792 −0.259823
\(389\) 1.99536 0.101169 0.0505845 0.998720i \(-0.483892\pi\)
0.0505845 + 0.998720i \(0.483892\pi\)
\(390\) 1.83918 + 3.18555i 0.0931305 + 0.161307i
\(391\) 1.89290 3.27860i 0.0957282 0.165806i
\(392\) 7.42034 12.8524i 0.374784 0.649145i
\(393\) −21.5692 −1.08802
\(394\) −12.6423 −0.636908
\(395\) 4.44859 + 7.70519i 0.223833 + 0.387690i
\(396\) 3.90941 0.196455
\(397\) −1.83572 3.17956i −0.0921321 0.159578i 0.816276 0.577662i \(-0.196035\pi\)
−0.908408 + 0.418085i \(0.862702\pi\)
\(398\) 3.99905 6.92655i 0.200454 0.347197i
\(399\) 9.36894 + 16.2275i 0.469033 + 0.812390i
\(400\) −1.00000 −0.0500000
\(401\) 5.51635 + 9.55459i 0.275473 + 0.477134i 0.970254 0.242088i \(-0.0778321\pi\)
−0.694781 + 0.719221i \(0.744499\pi\)
\(402\) −10.9272 18.9265i −0.544999 0.943966i
\(403\) 14.7471 0.734607
\(404\) 2.99149 5.18142i 0.148832 0.257785i
\(405\) 5.61123 + 9.71893i 0.278824 + 0.482937i
\(406\) 2.85354 4.94248i 0.141619 0.245291i
\(407\) −14.0615 + 24.3553i −0.697005 + 1.20725i
\(408\) −14.7731 25.5877i −0.731376 1.26678i
\(409\) 1.85904 0.0919234 0.0459617 0.998943i \(-0.485365\pi\)
0.0459617 + 0.998943i \(0.485365\pi\)
\(410\) −1.25735 + 2.17779i −0.0620960 + 0.107553i
\(411\) 2.20243 3.81472i 0.108638 0.188166i
\(412\) 12.9763 0.639296
\(413\) −9.28641 16.0845i −0.456954 0.791468i
\(414\) −0.533773 + 0.924522i −0.0262335 + 0.0454378i
\(415\) 0.625064 + 1.08264i 0.0306832 + 0.0531448i
\(416\) 4.41722 + 7.65084i 0.216572 + 0.375113i
\(417\) −21.6552 + 37.5080i −1.06046 + 1.83677i
\(418\) −9.20424 + 15.9422i −0.450194 + 0.779759i
\(419\) 2.60607 4.51384i 0.127315 0.220515i −0.795321 0.606189i \(-0.792698\pi\)
0.922635 + 0.385673i \(0.126031\pi\)
\(420\) −1.49149 2.58334i −0.0727774 0.126054i
\(421\) −9.71146 + 16.8207i −0.473308 + 0.819793i −0.999533 0.0305520i \(-0.990273\pi\)
0.526225 + 0.850345i \(0.323607\pi\)
\(422\) 4.17287 + 7.22762i 0.203132 + 0.351835i
\(423\) 6.73294 11.6618i 0.327367 0.567016i
\(424\) 34.3357 1.66749
\(425\) 4.73080 0.229477
\(426\) −9.92385 −0.480812
\(427\) −18.8130 −0.910425
\(428\) −4.84735 + 8.39586i −0.234306 + 0.405829i
\(429\) −10.7796 −0.520444
\(430\) 2.52424 + 4.37210i 0.121729 + 0.210842i
\(431\) −13.2050 + 22.8717i −0.636062 + 1.10169i 0.350227 + 0.936665i \(0.386104\pi\)
−0.986289 + 0.165027i \(0.947229\pi\)
\(432\) −1.73414 3.00363i −0.0834340 0.144512i
\(433\) 11.8391 0.568949 0.284475 0.958684i \(-0.408181\pi\)
0.284475 + 0.958684i \(0.408181\pi\)
\(434\) 11.9593 0.574064
\(435\) 4.14595 + 7.18100i 0.198783 + 0.344302i
\(436\) 6.34769 + 10.9945i 0.303999 + 0.526542i
\(437\) 2.51341 + 4.35335i 0.120233 + 0.208249i
\(438\) −11.2878 19.5510i −0.539351 0.934183i
\(439\) −13.2050 + 22.8717i −0.630240 + 1.09161i 0.357263 + 0.934004i \(0.383710\pi\)
−0.987502 + 0.157603i \(0.949623\pi\)
\(440\) 4.39582 7.61379i 0.209563 0.362973i
\(441\) 3.29963 5.71513i 0.157125 0.272149i
\(442\) 4.17939 + 7.23892i 0.198793 + 0.344320i
\(443\) 9.94001 17.2166i 0.472264 0.817985i −0.527232 0.849721i \(-0.676770\pi\)
0.999496 + 0.0317359i \(0.0101035\pi\)
\(444\) 19.9784 0.948131
\(445\) −7.52708 −0.356818
\(446\) 2.11519 + 3.66362i 0.100157 + 0.173477i
\(447\) −1.58150 2.73923i −0.0748022 0.129561i
\(448\) 5.01503 + 8.68629i 0.236938 + 0.410389i
\(449\) −0.0405811 + 0.0702885i −0.00191514 + 0.00331712i −0.866981 0.498341i \(-0.833943\pi\)
0.865066 + 0.501658i \(0.167276\pi\)
\(450\) −1.33402 −0.0628863
\(451\) −3.68472 6.38212i −0.173507 0.300522i
\(452\) 8.36275 0.393350
\(453\) 25.2135 4.32611i 1.18463 0.203259i
\(454\) 22.2893 1.04609
\(455\) 1.26586 + 2.19253i 0.0593442 + 0.102787i
\(456\) 39.2316 1.83719
\(457\) 5.62378 9.74067i 0.263069 0.455649i −0.703987 0.710213i \(-0.748599\pi\)
0.967056 + 0.254564i \(0.0819319\pi\)
\(458\) 10.8706 + 18.8285i 0.507951 + 0.879798i
\(459\) 8.20388 + 14.2095i 0.382924 + 0.663244i
\(460\) −0.400124 0.693034i −0.0186559 0.0323129i
\(461\) −5.63525 −0.262460 −0.131230 0.991352i \(-0.541893\pi\)
−0.131230 + 0.991352i \(0.541893\pi\)
\(462\) −8.74178 −0.406705
\(463\) 5.80644 10.0570i 0.269848 0.467390i −0.698974 0.715147i \(-0.746360\pi\)
0.968822 + 0.247756i \(0.0796932\pi\)
\(464\) −1.99149 3.44937i −0.0924527 0.160133i
\(465\) −8.68790 + 15.0479i −0.402892 + 0.697829i
\(466\) −3.25503 + 5.63788i −0.150786 + 0.261170i
\(467\) −2.83634 + 4.91268i −0.131250 + 0.227332i −0.924159 0.382009i \(-0.875232\pi\)
0.792909 + 0.609341i \(0.208566\pi\)
\(468\) 1.17853 + 2.04128i 0.0544776 + 0.0943580i
\(469\) −7.52089 13.0266i −0.347282 0.601511i
\(470\) −5.04711 8.74184i −0.232806 0.403231i
\(471\) −11.7473 20.3469i −0.541287 0.937537i
\(472\) −38.8860 −1.78987
\(473\) −14.7948 −0.680265
\(474\) −9.26122 16.0409i −0.425382 0.736783i
\(475\) −3.14079 + 5.44001i −0.144109 + 0.249605i
\(476\) −3.38930 5.87044i −0.155348 0.269071i
\(477\) 15.2682 0.699082
\(478\) 0.0327425 0.0567117i 0.00149761 0.00259393i
\(479\) −12.9496 −0.591683 −0.295842 0.955237i \(-0.595600\pi\)
−0.295842 + 0.955237i \(0.595600\pi\)
\(480\) −10.4092 −0.475111
\(481\) −16.9560 −0.773126
\(482\) −9.00981 −0.410385
\(483\) −1.19356 + 2.06731i −0.0543090 + 0.0940659i
\(484\) −1.20594 2.08875i −0.0548156 0.0949434i
\(485\) −2.55896 + 4.43225i −0.116196 + 0.201258i
\(486\) −6.47919 11.2223i −0.293902 0.509053i
\(487\) 20.0110 34.6601i 0.906786 1.57060i 0.0882834 0.996095i \(-0.471862\pi\)
0.818502 0.574503i \(-0.194805\pi\)
\(488\) −19.6944 + 34.1118i −0.891526 + 1.54417i
\(489\) 4.67887 8.10403i 0.211586 0.366477i
\(490\) −2.47345 4.28414i −0.111739 0.193538i
\(491\) 19.4715 + 33.7256i 0.878735 + 1.52201i 0.852730 + 0.522352i \(0.174945\pi\)
0.0260047 + 0.999662i \(0.491722\pi\)
\(492\) −2.61759 + 4.53379i −0.118010 + 0.204399i
\(493\) 9.42135 + 16.3182i 0.424316 + 0.734937i
\(494\) −11.0988 −0.499361
\(495\) 1.95471 3.38565i 0.0878575 0.152174i
\(496\) 4.17320 7.22819i 0.187382 0.324556i
\(497\) −6.83031 −0.306381
\(498\) −1.30128 2.25388i −0.0583117 0.100999i
\(499\) −4.76165 + 8.24742i −0.213161 + 0.369205i −0.952702 0.303906i \(-0.901709\pi\)
0.739541 + 0.673111i \(0.235042\pi\)
\(500\) 0.500000 0.866025i 0.0223607 0.0387298i
\(501\) −18.3534 31.7890i −0.819968 1.42023i
\(502\) −7.90400 + 13.6901i −0.352773 + 0.611020i
\(503\) 3.43979 0.153372 0.0766862 0.997055i \(-0.475566\pi\)
0.0766862 + 0.997055i \(0.475566\pi\)
\(504\) 2.86721 + 4.96615i 0.127716 + 0.221210i
\(505\) −2.99149 5.18142i −0.133120 0.230570i
\(506\) −2.34516 −0.104255
\(507\) 10.2823 + 17.8094i 0.456652 + 0.790945i
\(508\) 11.2285 19.4483i 0.498183 0.862879i
\(509\) −15.4960 26.8399i −0.686850 1.18966i −0.972852 0.231429i \(-0.925660\pi\)
0.286002 0.958229i \(-0.407674\pi\)
\(510\) −9.84872 −0.436109
\(511\) −7.76906 13.4564i −0.343683 0.595276i
\(512\) 11.0000 0.486136
\(513\) −21.7863 −0.961890
\(514\) 9.78744 16.9523i 0.431705 0.747736i
\(515\) 6.48814 11.2378i 0.285902 0.495196i
\(516\) 5.25503 + 9.10198i 0.231340 + 0.400692i
\(517\) 29.5816 1.30100
\(518\) −13.7505 −0.604164
\(519\) −1.87605 + 3.24942i −0.0823495 + 0.142634i
\(520\) 5.30066 0.232449
\(521\) −8.88709 −0.389351 −0.194675 0.980868i \(-0.562365\pi\)
−0.194675 + 0.980868i \(0.562365\pi\)
\(522\) −2.65669 4.60153i −0.116280 0.201403i
\(523\) 36.9711 1.61663 0.808316 0.588748i \(-0.200379\pi\)
0.808316 + 0.588748i \(0.200379\pi\)
\(524\) −5.18034 + 8.97262i −0.226304 + 0.391971i
\(525\) −2.98299 −0.130188
\(526\) 20.3248 0.886201
\(527\) −19.7426 + 34.1951i −0.859999 + 1.48956i
\(528\) −3.05045 + 5.28354i −0.132754 + 0.229937i
\(529\) 11.1798 19.3640i 0.486078 0.841912i
\(530\) 5.72262 9.91187i 0.248575 0.430544i
\(531\) −17.2916 −0.750391
\(532\) 9.00067 0.390228
\(533\) 2.22159 3.84791i 0.0962278 0.166672i
\(534\) 15.6701 0.678112
\(535\) 4.84735 + 8.39586i 0.209569 + 0.362985i
\(536\) −31.4930 −1.36029
\(537\) −10.3340 −0.445946
\(538\) 2.86676 4.96538i 0.123595 0.214073i
\(539\) 14.4971 0.624435
\(540\) 3.46829 0.149251
\(541\) 16.6460 + 28.8318i 0.715669 + 1.23957i 0.962701 + 0.270567i \(0.0872113\pi\)
−0.247032 + 0.969007i \(0.579455\pi\)
\(542\) −16.3168 + 28.2616i −0.700868 + 1.21394i
\(543\) 11.2502 19.4859i 0.482793 0.836221i
\(544\) −23.6540 −1.01416
\(545\) 12.6954 0.543810
\(546\) −2.63530 4.56447i −0.112780 0.195341i
\(547\) 31.1850 1.33338 0.666688 0.745337i \(-0.267712\pi\)
0.666688 + 0.745337i \(0.267712\pi\)
\(548\) −1.05793 1.83239i −0.0451925 0.0782758i
\(549\) −8.75760 + 15.1686i −0.373765 + 0.647380i
\(550\) −1.46527 2.53793i −0.0624795 0.108218i
\(551\) −25.0195 −1.06586
\(552\) 2.49897 + 4.32834i 0.106363 + 0.184226i
\(553\) −6.37424 11.0405i −0.271060 0.469490i
\(554\) −9.81330 −0.416927
\(555\) 9.98918 17.3018i 0.424017 0.734419i
\(556\) 10.4020 + 18.0168i 0.441144 + 0.764083i
\(557\) 12.7452 22.0754i 0.540033 0.935365i −0.458868 0.888504i \(-0.651745\pi\)
0.998901 0.0468604i \(-0.0149216\pi\)
\(558\) 5.56713 9.64256i 0.235676 0.408202i
\(559\) −4.46004 7.72501i −0.188639 0.326733i
\(560\) 1.43287 0.0605496
\(561\) 14.4311 24.9954i 0.609280 1.05530i
\(562\) 7.43055 12.8701i 0.313439 0.542892i
\(563\) −5.24086 −0.220876 −0.110438 0.993883i \(-0.535225\pi\)
−0.110438 + 0.993883i \(0.535225\pi\)
\(564\) −10.5072 18.1990i −0.442434 0.766318i
\(565\) 4.18137 7.24235i 0.175912 0.304688i
\(566\) 10.3552 + 17.9358i 0.435263 + 0.753898i
\(567\) −8.04014 13.9259i −0.337654 0.584834i
\(568\) −7.15033 + 12.3847i −0.300021 + 0.519652i
\(569\) −4.20259 + 7.27911i −0.176182 + 0.305156i −0.940570 0.339601i \(-0.889708\pi\)
0.764388 + 0.644757i \(0.223041\pi\)
\(570\) 6.53860 11.3252i 0.273872 0.474360i
\(571\) 2.80610 + 4.86031i 0.117432 + 0.203398i 0.918749 0.394842i \(-0.129201\pi\)
−0.801317 + 0.598239i \(0.795867\pi\)
\(572\) −2.58897 + 4.48423i −0.108250 + 0.187495i
\(573\) −23.0132 39.8601i −0.961392 1.66518i
\(574\) 1.80161 3.12048i 0.0751978 0.130246i
\(575\) −0.800247 −0.0333726
\(576\) 9.33814 0.389089
\(577\) −38.2146 −1.59089 −0.795447 0.606024i \(-0.792764\pi\)
−0.795447 + 0.606024i \(0.792764\pi\)
\(578\) −5.38043 −0.223796
\(579\) 9.62592 16.6726i 0.400040 0.692889i
\(580\) 3.98299 0.165384
\(581\) −0.895633 1.55128i −0.0371571 0.0643580i
\(582\) 5.32732 9.22720i 0.220825 0.382480i
\(583\) 16.7704 + 29.0472i 0.694560 + 1.20301i
\(584\) −32.5322 −1.34619
\(585\) 2.35706 0.0974525
\(586\) 12.1398 + 21.0268i 0.501492 + 0.868610i
\(587\) 18.0732 + 31.3038i 0.745962 + 1.29204i 0.949744 + 0.313028i \(0.101343\pi\)
−0.203782 + 0.979016i \(0.565323\pi\)
\(588\) −5.14930 8.91885i −0.212354 0.367807i
\(589\) −26.2143 45.4045i −1.08014 1.87086i
\(590\) −6.48100 + 11.2254i −0.266819 + 0.462143i
\(591\) −13.1595 + 22.7930i −0.541311 + 0.937578i
\(592\) −4.79826 + 8.31084i −0.197207 + 0.341573i
\(593\) −16.5319 28.6341i −0.678884 1.17586i −0.975317 0.220808i \(-0.929131\pi\)
0.296434 0.955053i \(-0.404203\pi\)
\(594\) 5.08199 8.80227i 0.208517 0.361162i
\(595\) −6.77860 −0.277895
\(596\) −1.51933 −0.0622343
\(597\) −8.32534 14.4199i −0.340734 0.590168i
\(598\) −0.706973 1.22451i −0.0289103 0.0500741i
\(599\) −3.72031 6.44376i −0.152008 0.263285i 0.779958 0.625832i \(-0.215240\pi\)
−0.931965 + 0.362547i \(0.881907\pi\)
\(600\) −3.12275 + 5.40876i −0.127486 + 0.220812i
\(601\) −10.6366 −0.433875 −0.216938 0.976185i \(-0.569607\pi\)
−0.216938 + 0.976185i \(0.569607\pi\)
\(602\) −3.61689 6.26464i −0.147413 0.255328i
\(603\) −14.0041 −0.570292
\(604\) 4.25598 11.5276i 0.173174 0.469053i
\(605\) −2.41189 −0.0980571
\(606\) 6.22778 + 10.7868i 0.252986 + 0.438185i
\(607\) −28.7719 −1.16782 −0.583908 0.811820i \(-0.698477\pi\)
−0.583908 + 0.811820i \(0.698477\pi\)
\(608\) 15.7040 27.2001i 0.636880 1.10311i
\(609\) −5.94059 10.2894i −0.240725 0.416948i
\(610\) 6.56482 + 11.3706i 0.265802 + 0.460382i
\(611\) 8.91766 + 15.4458i 0.360770 + 0.624872i
\(612\) −6.31098 −0.255106
\(613\) 42.7897 1.72826 0.864131 0.503268i \(-0.167869\pi\)
0.864131 + 0.503268i \(0.167869\pi\)
\(614\) 1.03344 1.78997i 0.0417062 0.0722372i
\(615\) 2.61759 + 4.53379i 0.105551 + 0.182820i
\(616\) −6.29863 + 10.9095i −0.253779 + 0.439558i
\(617\) −3.64543 + 6.31406i −0.146759 + 0.254195i −0.930028 0.367489i \(-0.880218\pi\)
0.783269 + 0.621683i \(0.213551\pi\)
\(618\) −13.5072 + 23.3952i −0.543340 + 0.941093i
\(619\) −20.0805 34.7805i −0.807105 1.39795i −0.914861 0.403770i \(-0.867700\pi\)
0.107755 0.994177i \(-0.465634\pi\)
\(620\) 4.17320 + 7.22819i 0.167600 + 0.290291i
\(621\) −1.38774 2.40364i −0.0556883 0.0964549i
\(622\) 13.7033 + 23.7348i 0.549452 + 0.951679i
\(623\) 10.7853 0.432104
\(624\) −3.67836 −0.147252
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −2.16701 + 3.75337i −0.0866111 + 0.150015i
\(627\) 19.1617 + 33.1890i 0.765244 + 1.32544i
\(628\) −11.2856 −0.450342
\(629\) 22.6996 39.3169i 0.905093 1.56767i
\(630\) 1.91147 0.0761549
\(631\) 27.7228 1.10363 0.551813 0.833968i \(-0.313936\pi\)
0.551813 + 0.833968i \(0.313936\pi\)
\(632\) −26.6916 −1.06173
\(633\) 17.3744 0.690570
\(634\) 1.64149 2.84314i 0.0651918 0.112916i
\(635\) −11.2285 19.4483i −0.445589 0.771782i
\(636\) 11.9135 20.6348i 0.472402 0.818225i
\(637\) 4.37030 + 7.56958i 0.173158 + 0.299918i
\(638\) 5.83617 10.1085i 0.231056 0.400201i
\(639\) −3.17956 + 5.50716i −0.125782 + 0.217860i
\(640\) −1.50000 + 2.59808i −0.0592927 + 0.102698i
\(641\) −3.80350 6.58786i −0.150229 0.260205i 0.781082 0.624428i \(-0.214668\pi\)
−0.931312 + 0.364223i \(0.881335\pi\)
\(642\) −10.0914 17.4788i −0.398275 0.689832i
\(643\) −25.0290 + 43.3514i −0.987046 + 1.70961i −0.354580 + 0.935026i \(0.615376\pi\)
−0.632466 + 0.774588i \(0.717957\pi\)
\(644\) 0.573324 + 0.993026i 0.0225921 + 0.0391307i
\(645\) 10.5101 0.413833
\(646\) 14.8584 25.7356i 0.584598 1.01255i
\(647\) −16.0192 + 27.7460i −0.629779 + 1.09081i 0.357817 + 0.933792i \(0.383521\pi\)
−0.987596 + 0.157018i \(0.949812\pi\)
\(648\) −33.6674 −1.32258
\(649\) −18.9929 32.8967i −0.745536 1.29131i
\(650\) 0.883443 1.53017i 0.0346515 0.0600182i
\(651\) 12.4486 21.5616i 0.487899 0.845066i
\(652\) −2.24748 3.89274i −0.0880180 0.152452i
\(653\) −10.2946 + 17.8307i −0.402858 + 0.697771i −0.994070 0.108746i \(-0.965317\pi\)
0.591211 + 0.806517i \(0.298650\pi\)
\(654\) −26.4296 −1.03348
\(655\) 5.18034 + 8.97262i 0.202413 + 0.350589i
\(656\) −1.25735 2.17779i −0.0490912 0.0850285i
\(657\) −14.4662 −0.564381
\(658\) 7.23183 + 12.5259i 0.281926 + 0.488310i
\(659\) 0.893505 1.54760i 0.0348060 0.0602858i −0.848098 0.529840i \(-0.822252\pi\)
0.882904 + 0.469554i \(0.155585\pi\)
\(660\) −3.05045 5.28354i −0.118739 0.205662i
\(661\) 2.97763 0.115816 0.0579081 0.998322i \(-0.481557\pi\)
0.0579081 + 0.998322i \(0.481557\pi\)
\(662\) 0.820610 + 1.42134i 0.0318939 + 0.0552419i
\(663\) 17.4016 0.675821
\(664\) −3.75038 −0.145543
\(665\) 4.50033 7.79481i 0.174515 0.302270i
\(666\) −6.40098 + 11.0868i −0.248033 + 0.429606i
\(667\) −1.59369 2.76035i −0.0617078 0.106881i
\(668\) −17.6320 −0.682201
\(669\) 8.80694 0.340496
\(670\) −5.24884 + 9.09126i −0.202780 + 0.351226i
\(671\) −38.4770 −1.48539
\(672\) 14.9149 0.575356
\(673\) −4.51470 7.81968i −0.174029 0.301427i 0.765796 0.643084i \(-0.222345\pi\)
−0.939825 + 0.341657i \(0.889012\pi\)
\(674\) 10.2429 0.394542
\(675\) 1.73414 3.00363i 0.0667472 0.115610i
\(676\) 9.87811 0.379927
\(677\) 11.5324 0.443228 0.221614 0.975135i \(-0.428868\pi\)
0.221614 + 0.975135i \(0.428868\pi\)
\(678\) −8.70491 + 15.0773i −0.334310 + 0.579042i
\(679\) 3.66665 6.35082i 0.140713 0.243722i
\(680\) −7.09619 + 12.2910i −0.272127 + 0.471337i
\(681\) 23.2013 40.1858i 0.889076 1.53992i
\(682\) 24.4595 0.936604
\(683\) −2.28637 −0.0874857 −0.0437429 0.999043i \(-0.513928\pi\)
−0.0437429 + 0.999043i \(0.513928\pi\)
\(684\) 4.18988 7.25709i 0.160204 0.277482i
\(685\) −2.11586 −0.0808429
\(686\) 8.55915 + 14.8249i 0.326790 + 0.566017i
\(687\) 45.2617 1.72684
\(688\) −5.04847 −0.192471
\(689\) −10.1112 + 17.5132i −0.385207 + 0.667198i
\(690\) 1.66598 0.0634228
\(691\) −39.8185 −1.51477 −0.757383 0.652971i \(-0.773522\pi\)
−0.757383 + 0.652971i \(0.773522\pi\)
\(692\) 0.901154 + 1.56084i 0.0342567 + 0.0593344i
\(693\) −2.80083 + 4.85118i −0.106395 + 0.184281i
\(694\) 6.61354 11.4550i 0.251047 0.434826i
\(695\) 20.8040 0.789142
\(696\) −24.8757 −0.942911
\(697\) 5.94826 + 10.3027i 0.225306 + 0.390242i
\(698\) 1.18737 0.0449427
\(699\) 6.77642 + 11.7371i 0.256308 + 0.443938i
\(700\) −0.716433 + 1.24090i −0.0270786 + 0.0469016i
\(701\) −1.68341 2.91575i −0.0635814 0.110126i 0.832482 0.554051i \(-0.186919\pi\)
−0.896064 + 0.443925i \(0.853586\pi\)
\(702\) 6.12807 0.231289
\(703\) 30.1407 + 52.2052i 1.13678 + 1.96896i
\(704\) 10.2569 + 17.7655i 0.386572 + 0.669563i
\(705\) −21.0144 −0.791450
\(706\) −6.54280 + 11.3325i −0.246242 + 0.426503i
\(707\) 4.28641 + 7.42428i 0.161207 + 0.279219i
\(708\) −13.4924 + 23.3694i −0.507074 + 0.878277i
\(709\) 18.2030 31.5285i 0.683628 1.18408i −0.290238 0.956955i \(-0.593734\pi\)
0.973866 0.227124i \(-0.0729324\pi\)
\(710\) 2.38344 + 4.12824i 0.0894490 + 0.154930i
\(711\) −11.8690 −0.445123
\(712\) 11.2906 19.5559i 0.423134 0.732889i
\(713\) 3.33959 5.78434i 0.125069 0.216625i
\(714\) 14.1119 0.528124
\(715\) 2.58897 + 4.48423i 0.0968221 + 0.167701i
\(716\) −2.48195 + 4.29887i −0.0927550 + 0.160656i
\(717\) −0.0681644 0.118064i −0.00254565 0.00440919i
\(718\) −15.9358 27.6016i −0.594718 1.03008i
\(719\) 10.4054 18.0226i 0.388054 0.672130i −0.604133 0.796883i \(-0.706481\pi\)
0.992188 + 0.124753i \(0.0398139\pi\)
\(720\) 0.667010 1.15530i 0.0248580 0.0430553i
\(721\) −9.29664 + 16.1023i −0.346225 + 0.599679i
\(722\) 10.2291 + 17.7174i 0.380689 + 0.659373i
\(723\) −9.37845 + 16.2439i −0.348788 + 0.604119i
\(724\) −5.40400 9.36000i −0.200838 0.347861i
\(725\) 1.99149 3.44937i 0.0739622 0.128106i
\(726\) 5.02114 0.186352
\(727\) 24.7884 0.919351 0.459675 0.888087i \(-0.347966\pi\)
0.459675 + 0.888087i \(0.347966\pi\)
\(728\) −7.59514 −0.281494
\(729\) 6.69019 0.247785
\(730\) −5.42204 + 9.39125i −0.200679 + 0.347586i
\(731\) 23.8833 0.883355
\(732\) 13.6668 + 23.6717i 0.505141 + 0.874930i
\(733\) 4.63806 8.03336i 0.171311 0.296719i −0.767568 0.640968i \(-0.778533\pi\)
0.938878 + 0.344249i \(0.111866\pi\)
\(734\) 0.0674682 + 0.116858i 0.00249030 + 0.00431332i
\(735\) −10.2986 −0.379870
\(736\) 4.00124 0.147488
\(737\) −15.3820 26.6424i −0.566603 0.981385i
\(738\) −1.67733 2.90522i −0.0617433 0.106943i
\(739\) −8.74925 15.1542i −0.321846 0.557454i 0.659023 0.752123i \(-0.270970\pi\)
−0.980869 + 0.194669i \(0.937637\pi\)
\(740\) −4.79826 8.31084i −0.176388 0.305512i
\(741\) −11.5530 + 20.0103i −0.424409 + 0.735097i
\(742\) −8.19975 + 14.2024i −0.301022 + 0.521386i
\(743\) 3.50170 6.06512i 0.128465 0.222508i −0.794617 0.607111i \(-0.792328\pi\)
0.923082 + 0.384603i \(0.125662\pi\)
\(744\) −26.0637 45.1436i −0.955541 1.65505i
\(745\) −0.759666 + 1.31578i −0.0278320 + 0.0482065i
\(746\) −28.1380 −1.03021
\(747\) −1.66770 −0.0610178
\(748\) −6.93191 12.0064i −0.253456 0.438998i
\(749\) −6.94561 12.0301i −0.253787 0.439572i
\(750\) 1.04092 + 1.80292i 0.0380089 + 0.0658333i
\(751\) −16.1994 + 28.0582i −0.591125 + 1.02386i 0.402956 + 0.915219i \(0.367983\pi\)
−0.994081 + 0.108639i \(0.965351\pi\)
\(752\) 10.0942 0.368098
\(753\) 16.4548 + 28.5005i 0.599646 + 1.03862i
\(754\) 7.03748 0.256290
\(755\) −7.85524 9.44961i −0.285882 0.343907i
\(756\) −4.96959 −0.180742
\(757\) −10.5707 18.3089i −0.384198 0.665450i 0.607460 0.794350i \(-0.292189\pi\)
−0.991658 + 0.128901i \(0.958855\pi\)
\(758\) −32.4236 −1.17768
\(759\) −2.44112 + 4.22814i −0.0886069 + 0.153472i
\(760\) −9.42238 16.3200i −0.341785 0.591990i
\(761\) 2.45153 + 4.24617i 0.0888679 + 0.153924i 0.907033 0.421060i \(-0.138342\pi\)
−0.818165 + 0.574984i \(0.805008\pi\)
\(762\) 23.3758 + 40.4881i 0.846816 + 1.46673i
\(763\) −18.1908 −0.658550
\(764\) −22.1087 −0.799863
\(765\) −3.15549 + 5.46547i −0.114087 + 0.197604i
\(766\) 17.0976 + 29.6138i 0.617760 + 1.06999i
\(767\) 11.4512 19.8341i 0.413479 0.716166i
\(768\) 17.6956 30.6496i 0.638534 1.10597i
\(769\) 12.5874 21.8020i 0.453913 0.786201i −0.544712 0.838623i \(-0.683361\pi\)
0.998625 + 0.0524224i \(0.0166942\pi\)
\(770\) 2.09954 + 3.63651i 0.0756622 + 0.131051i
\(771\) −20.3758 35.2919i −0.733816 1.27101i
\(772\) −4.62378 8.00862i −0.166413 0.288236i
\(773\) −9.97283 17.2734i −0.358698 0.621283i 0.629046 0.777368i \(-0.283446\pi\)
−0.987744 + 0.156086i \(0.950112\pi\)
\(774\) −6.73476 −0.242076
\(775\) 8.34640 0.299812
\(776\) −7.67688 13.2968i −0.275584 0.477326i
\(777\) −14.3132 + 24.7911i −0.513481 + 0.889376i
\(778\) 0.997682 + 1.72804i 0.0357686 + 0.0619531i
\(779\) −15.7963 −0.565960
\(780\) 1.83918 3.18555i 0.0658532 0.114061i
\(781\) −13.9696 −0.499871
\(782\) 3.78581 0.135380
\(783\) 13.8141 0.493677
\(784\) 4.94689 0.176675
\(785\) −5.64278 + 9.77357i −0.201399 + 0.348834i
\(786\) −10.7846 18.6795i −0.384674 0.666275i
\(787\) 0.441708 0.765061i 0.0157452 0.0272715i −0.858045 0.513574i \(-0.828321\pi\)
0.873791 + 0.486302i \(0.161655\pi\)
\(788\) 6.32113 + 10.9485i 0.225181 + 0.390025i
\(789\) 21.1563 36.6439i 0.753186 1.30456i
\(790\) −4.44859 + 7.70519i −0.158274 + 0.274138i
\(791\) −5.99135 + 10.3773i −0.213028 + 0.368975i
\(792\) 5.86412 + 10.1569i 0.208372 + 0.360911i
\(793\) −11.5993 20.0906i −0.411903 0.713436i
\(794\) 1.83572 3.17956i 0.0651473 0.112838i
\(795\) −11.9135 20.6348i −0.422530 0.731843i
\(796\) −7.99809 −0.283485
\(797\) −17.9463 + 31.0839i −0.635690 + 1.10105i 0.350679 + 0.936496i \(0.385951\pi\)
−0.986369 + 0.164551i \(0.947382\pi\)
\(798\) −9.36894 + 16.2275i −0.331657 + 0.574446i
\(799\) −47.7536 −1.68940
\(800\) 2.50000 + 4.33013i 0.0883883 + 0.153093i
\(801\) 5.02064 8.69600i 0.177395 0.307258i
\(802\) −5.51635 + 9.55459i −0.194789 + 0.337384i
\(803\) −15.8896 27.5215i −0.560730 0.971213i
\(804\) −10.9272 + 18.9265i −0.385373 + 0.667485i
\(805\) 1.14665 0.0404140
\(806\) 7.37357 + 12.7714i 0.259723 + 0.449853i
\(807\) −5.96812 10.3371i −0.210088 0.363882i
\(808\) 17.9490 0.631442
\(809\) 11.5913 + 20.0767i 0.407528 + 0.705858i 0.994612 0.103667i \(-0.0330577\pi\)
−0.587085 + 0.809526i \(0.699724\pi\)
\(810\) −5.61123 + 9.71893i −0.197158 + 0.341488i
\(811\) −20.9671 36.3161i −0.736254 1.27523i −0.954171 0.299262i \(-0.903260\pi\)
0.217917 0.975967i \(-0.430074\pi\)
\(812\) −5.70708 −0.200279
\(813\) 33.9689 + 58.8358i 1.19134 + 2.06346i
\(814\) −28.1231 −0.985714
\(815\) −4.49495 −0.157451
\(816\) 4.92436 8.52924i 0.172387 0.298583i
\(817\) −15.8562 + 27.4637i −0.554738 + 0.960834i
\(818\) 0.929518 + 1.60997i 0.0324998 + 0.0562914i
\(819\) −3.37736 −0.118014
\(820\) 2.51470 0.0878170
\(821\) −2.61725 + 4.53321i −0.0913428 + 0.158210i −0.908076 0.418805i \(-0.862449\pi\)
0.816734 + 0.577015i \(0.195783\pi\)
\(822\) 4.40486 0.153637
\(823\) 40.8812 1.42503 0.712515 0.701657i \(-0.247556\pi\)
0.712515 + 0.701657i \(0.247556\pi\)
\(824\) 19.4644 + 33.7134i 0.678076 + 1.17446i
\(825\) −6.10091 −0.212406
\(826\) 9.28641 16.0845i 0.323115 0.559652i
\(827\) −15.9895 −0.556009 −0.278005 0.960580i \(-0.589673\pi\)
−0.278005 + 0.960580i \(0.589673\pi\)
\(828\) 1.06755 0.0370998
\(829\) 15.4626 26.7820i 0.537039 0.930179i −0.462023 0.886868i \(-0.652876\pi\)
0.999062 0.0433108i \(-0.0137906\pi\)
\(830\) −0.625064 + 1.08264i −0.0216963 + 0.0375791i
\(831\) −10.2148 + 17.6926i −0.354348 + 0.613749i
\(832\) −6.18410 + 10.7112i −0.214395 + 0.371343i
\(833\) −23.4027 −0.810857
\(834\) −43.3105 −1.49972
\(835\) −8.81598 + 15.2697i −0.305089 + 0.528430i
\(836\) 18.4085 0.636671
\(837\) 14.4739 + 25.0695i 0.500290 + 0.866527i
\(838\) 5.21213 0.180050
\(839\) 15.4107 0.532037 0.266018 0.963968i \(-0.414292\pi\)
0.266018 + 0.963968i \(0.414292\pi\)
\(840\) 4.47448 7.75002i 0.154384 0.267401i
\(841\) −13.1358 −0.452960
\(842\) −19.4229 −0.669358
\(843\) −15.4691 26.7933i −0.532786 0.922812i
\(844\) 4.17287 7.22762i 0.143636 0.248785i
\(845\) 4.93906 8.55470i 0.169909 0.294290i
\(846\) 13.4659 0.462967
\(847\) 3.45591 0.118746
\(848\) 5.72262 + 9.91187i 0.196516 + 0.340375i
\(849\) 43.1157 1.47973
\(850\) 2.36540 + 4.09699i 0.0811325 + 0.140526i
\(851\) −3.83980 + 6.65072i −0.131627 + 0.227984i
\(852\) 4.96193 + 8.59431i 0.169993 + 0.294436i
\(853\) −11.2830 −0.386322 −0.193161 0.981167i \(-0.561874\pi\)
−0.193161 + 0.981167i \(0.561874\pi\)
\(854\) −9.40650 16.2925i −0.321884 0.557519i
\(855\) −4.18988 7.25709i −0.143291 0.248187i
\(856\) −29.0841 −0.994075
\(857\) 14.4508 25.0295i 0.493631 0.854993i −0.506343 0.862332i \(-0.669003\pi\)
0.999973 + 0.00733930i \(0.00233619\pi\)
\(858\) −5.38981 9.33542i −0.184005 0.318706i
\(859\) −25.0087 + 43.3163i −0.853286 + 1.47793i 0.0249406 + 0.999689i \(0.492060\pi\)
−0.878226 + 0.478245i \(0.841273\pi\)
\(860\) 2.52424 4.37210i 0.0860757 0.149087i
\(861\) −3.75065 6.49632i −0.127822 0.221394i
\(862\) −26.4100 −0.899527
\(863\) −21.5135 + 37.2625i −0.732329 + 1.26843i 0.223557 + 0.974691i \(0.428233\pi\)
−0.955885 + 0.293740i \(0.905100\pi\)
\(864\) −8.67072 + 15.0181i −0.294984 + 0.510927i
\(865\) 1.80231 0.0612803
\(866\) 5.91953 + 10.2529i 0.201154 + 0.348409i
\(867\) −5.60057 + 9.70048i −0.190205 + 0.329445i
\(868\) −5.97964 10.3570i −0.202962 0.351541i
\(869\) −13.0368 22.5804i −0.442244 0.765989i
\(870\) −4.14595 + 7.18100i −0.140561 + 0.243459i
\(871\) 9.27411 16.0632i 0.314241 0.544282i
\(872\) −19.0431 + 32.9835i −0.644879 + 1.11696i
\(873\) −3.41371 5.91271i −0.115536 0.200115i
\(874\) −2.51341 + 4.35335i −0.0850174 + 0.147254i
\(875\) 0.716433 + 1.24090i 0.0242199 + 0.0419500i
\(876\) −11.2878 + 19.5510i −0.381379 + 0.660567i
\(877\) 50.0114 1.68876 0.844382 0.535742i \(-0.179968\pi\)
0.844382 + 0.535742i \(0.179968\pi\)
\(878\) −26.4100 −0.891294
\(879\) 50.5462 1.70488
\(880\) 2.93055 0.0987888
\(881\) 28.2226 48.8829i 0.950842 1.64691i 0.207234 0.978291i \(-0.433554\pi\)
0.743608 0.668615i \(-0.233113\pi\)
\(882\) 6.59926 0.222209
\(883\) −10.3900 17.9960i −0.349650 0.605612i 0.636537 0.771246i \(-0.280366\pi\)
−0.986187 + 0.165634i \(0.947033\pi\)
\(884\) 4.17939 7.23892i 0.140568 0.243471i
\(885\) 13.4924 + 23.3694i 0.453540 + 0.785555i
\(886\) 19.8800 0.667882
\(887\) 54.3838 1.82603 0.913014 0.407928i \(-0.133749\pi\)
0.913014 + 0.407928i \(0.133749\pi\)
\(888\) 29.9675 + 51.9053i 1.00564 + 1.74183i
\(889\) 16.0889 + 27.8668i 0.539605 + 0.934623i
\(890\) −3.76354 6.51864i −0.126154 0.218505i
\(891\) −16.4440 28.4818i −0.550894 0.954176i
\(892\) 2.11519 3.66362i 0.0708219 0.122667i
\(893\) 31.7038 54.9126i 1.06093 1.83758i
\(894\) 1.58150 2.73923i 0.0528932 0.0916136i
\(895\) 2.48195 + 4.29887i 0.0829626 + 0.143695i
\(896\) 2.14930 3.72270i 0.0718030 0.124367i
\(897\) −2.94360 −0.0982838
\(898\) −0.0811622 −0.00270842
\(899\) 16.6218 + 28.7898i 0.554368 + 0.960193i
\(900\) 0.667010 + 1.15530i 0.0222337 + 0.0385099i
\(901\) −27.0726 46.8911i −0.901918 1.56217i
\(902\) 3.68472 6.38212i 0.122688 0.212501i
\(903\) −15.0595 −0.501149
\(904\) 12.5441 + 21.7271i 0.417211 + 0.722631i
\(905\) −10.8080 −0.359270
\(906\) 16.3533 + 19.6725i 0.543302 + 0.653575i
\(907\) −24.4819 −0.812907 −0.406454 0.913671i \(-0.633235\pi\)
−0.406454 + 0.913671i \(0.633235\pi\)
\(908\) −11.1447 19.3031i −0.369849 0.640597i
\(909\) 7.98142 0.264727
\(910\) −1.26586 + 2.19253i −0.0419627 + 0.0726816i
\(911\) −10.3286 17.8897i −0.342202 0.592712i 0.642639 0.766169i \(-0.277839\pi\)
−0.984841 + 0.173457i \(0.944506\pi\)
\(912\) 6.53860 + 11.3252i 0.216515 + 0.375014i
\(913\) −1.83178 3.17274i −0.0606231 0.105002i
\(914\) 11.2476 0.372036
\(915\) 27.3337 0.903623
\(916\) 10.8706 18.8285i 0.359176 0.622111i
\(917\) −7.42274 12.8566i −0.245120 0.424561i
\(918\) −8.20388 + 14.2095i −0.270768 + 0.468985i
\(919\) −11.9469 + 20.6926i −0.394092 + 0.682587i −0.992985 0.118242i \(-0.962274\pi\)
0.598893 + 0.800829i \(0.295607\pi\)
\(920\) 1.20037 2.07910i 0.0395751 0.0685460i
\(921\) −2.15144 3.72641i −0.0708925 0.122789i
\(922\) −2.81762 4.88027i −0.0927935 0.160723i
\(923\) −4.21127 7.29414i −0.138616 0.240090i
\(924\) 4.37089 + 7.57061i 0.143792 + 0.249055i
\(925\) −9.59653 −0.315532
\(926\) 11.6129 0.381623
\(927\) 8.65532 + 14.9914i 0.284278 + 0.492384i
\(928\) −9.95746 + 17.2468i −0.326870 + 0.566155i
\(929\) 9.27659 + 16.0675i 0.304355 + 0.527158i 0.977117 0.212700i \(-0.0682258\pi\)
−0.672763 + 0.739858i \(0.734892\pi\)
\(930\) −17.3758 −0.569775
\(931\) 15.5372 26.9112i 0.509210 0.881978i
\(932\) 6.51006 0.213244
\(933\) 57.0559 1.86793
\(934\) −5.67268 −0.185616
\(935\) −13.8638 −0.453396
\(936\) −3.53559 + 6.12383i −0.115565 + 0.200164i
\(937\) 5.60349 + 9.70553i 0.183058 + 0.317066i 0.942920 0.333018i \(-0.108067\pi\)
−0.759862 + 0.650084i \(0.774734\pi\)
\(938\) 7.52089 13.0266i 0.245566 0.425332i
\(939\) 4.51135 + 7.81389i 0.147222 + 0.254997i
\(940\) −5.04711 + 8.74184i −0.164618 + 0.285127i
\(941\) 5.49598 9.51932i 0.179164 0.310321i −0.762430 0.647070i \(-0.775994\pi\)
0.941594 + 0.336749i \(0.109327\pi\)
\(942\) 11.7473 20.3469i 0.382748 0.662939i
\(943\) −1.00619 1.74277i −0.0327660 0.0567525i
\(944\) −6.48100 11.2254i −0.210939 0.365356i
\(945\) −2.48480 + 4.30379i −0.0808304 + 0.140002i
\(946\) −7.39739 12.8127i −0.240510 0.416576i
\(947\) −43.3254 −1.40789 −0.703943 0.710256i \(-0.748579\pi\)
−0.703943 + 0.710256i \(0.748579\pi\)
\(948\) −9.26122 + 16.0409i −0.300790 + 0.520984i
\(949\) 9.58013 16.5933i 0.310984 0.538640i
\(950\) −6.28158 −0.203801
\(951\) −3.41730 5.91894i −0.110814 0.191935i
\(952\) 10.1679 17.6113i 0.329543 0.570786i
\(953\) 6.44575 11.1644i 0.208798 0.361649i −0.742538 0.669804i \(-0.766378\pi\)
0.951336 + 0.308155i \(0.0997114\pi\)
\(954\) 7.63410 + 13.2226i 0.247163 + 0.428099i
\(955\) −11.0543 + 19.1467i −0.357710 + 0.619571i
\(956\) −0.0654850 −0.00211794
\(957\) −12.1499 21.0443i −0.392751 0.680264i
\(958\) −6.47481 11.2147i −0.209192 0.362331i
\(959\) 3.03175 0.0979002
\(960\) −7.28641 12.6204i −0.235168 0.407323i
\(961\) −19.3312 + 33.4826i −0.623587 + 1.08008i
\(962\) −8.47799 14.6843i −0.273341 0.473441i
\(963\) −12.9329 −0.416758
\(964\) 4.50490 + 7.80272i 0.145093 + 0.251309i
\(965\) −9.24755 −0.297689
\(966\) −2.38713 −0.0768045
\(967\) −19.1555 + 33.1783i −0.615999 + 1.06694i 0.374209 + 0.927344i \(0.377914\pi\)
−0.990208 + 0.139597i \(0.955419\pi\)
\(968\) 3.61783 6.26626i 0.116281 0.201405i
\(969\) −30.9328 53.5771i −0.993704 1.72115i
\(970\) −5.11792 −0.164327
\(971\) −13.8913 −0.445795 −0.222897 0.974842i \(-0.571551\pi\)
−0.222897 + 0.974842i \(0.571551\pi\)
\(972\) −6.47919 + 11.2223i −0.207820 + 0.359955i
\(973\) −29.8094 −0.955645
\(974\) 40.0220 1.28239
\(975\) −1.83918 3.18555i −0.0589009 0.102019i
\(976\) −13.1296 −0.420269
\(977\) 3.88476 6.72860i 0.124284 0.215267i −0.797169 0.603757i \(-0.793670\pi\)
0.921453 + 0.388490i \(0.127003\pi\)
\(978\) 9.35773 0.299227
\(979\) 22.0585 0.704992
\(980\) −2.47345 + 4.28414i −0.0790114 + 0.136852i
\(981\) −8.46794 + 14.6669i −0.270361 + 0.468278i
\(982\) −19.4715 + 33.7256i −0.621359 + 1.07623i
\(983\) 11.1508 19.3137i 0.355655 0.616012i −0.631575 0.775315i \(-0.717591\pi\)
0.987230 + 0.159303i \(0.0509246\pi\)
\(984\) −15.7055 −0.500674
\(985\) 12.6423 0.402816
\(986\) −9.42135 + 16.3182i −0.300037 + 0.519679i
\(987\) 30.1109 0.958440
\(988\) 5.54942 + 9.61188i 0.176551 + 0.305795i
\(989\) −4.04002 −0.128465
\(990\) 3.90941 0.124249
\(991\) 7.83885 13.5773i 0.249009 0.431296i −0.714242 0.699899i \(-0.753228\pi\)
0.963251 + 0.268602i \(0.0865617\pi\)
\(992\) −41.7320 −1.32499
\(993\) 3.41674 0.108427
\(994\) −3.41516 5.91522i −0.108322 0.187619i
\(995\) −3.99905 + 6.92655i −0.126778 + 0.219587i
\(996\) −1.30128 + 2.25388i −0.0412326 + 0.0714169i
\(997\) −22.9749 −0.727622 −0.363811 0.931473i \(-0.618525\pi\)
−0.363811 + 0.931473i \(0.618525\pi\)
\(998\) −9.52330 −0.301455
\(999\) −16.6418 28.8244i −0.526522 0.911963i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 755.2.e.d.636.4 yes 8
151.118 even 3 inner 755.2.e.d.571.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
755.2.e.d.571.4 8 151.118 even 3 inner
755.2.e.d.636.4 yes 8 1.1 even 1 trivial