Properties

Label 7500.2.o
Level $7500$
Weight $2$
Character orbit 7500.o
Rep. character $\chi_{7500}(2749,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $320$
Sturm bound $3000$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 7500 = 2^{2} \cdot 3 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7500.o (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(3000\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(7500, [\chi])\).

Total New Old
Modular forms 6360 320 6040
Cusp forms 5640 320 5320
Eisenstein series 720 0 720

Decomposition of \(S_{2}^{\mathrm{new}}(7500, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(7500, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(7500, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(125, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(250, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(375, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(500, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(625, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(750, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1250, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1500, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1875, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2500, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3750, [\chi])\)\(^{\oplus 2}\)