Properties

Label 750.2.r
Level $750$
Weight $2$
Character orbit 750.r
Rep. character $\chi_{750}(17,\cdot)$
Character field $\Q(\zeta_{100})$
Dimension $2000$
Newform subspaces $1$
Sturm bound $300$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 750 = 2 \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 750.r (of order \(100\) and degree \(40\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 375 \)
Character field: \(\Q(\zeta_{100})\)
Newform subspaces: \( 1 \)
Sturm bound: \(300\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(750, [\chi])\).

Total New Old
Modular forms 6160 2000 4160
Cusp forms 5840 2000 3840
Eisenstein series 320 0 320

Trace form

\( 2000 q + 40 q^{19} + 40 q^{22} + 120 q^{25} + 20 q^{28} + 40 q^{34} + 40 q^{39} + 80 q^{45} + 80 q^{57} - 20 q^{60} - 60 q^{63} - 80 q^{67} - 140 q^{69} - 80 q^{70} - 80 q^{73} - 160 q^{75} - 100 q^{78}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(750, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
750.2.r.a 750.r 375.r $2000$ $5.989$ None 750.2.r.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{100}]$

Decomposition of \(S_{2}^{\mathrm{old}}(750, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(750, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(375, [\chi])\)\(^{\oplus 2}\)