Defining parameters
| Level: | \( N \) | \(=\) | \( 744 = 2^{3} \cdot 3 \cdot 31 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 744.bf (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 248 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(256\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(744, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 264 | 128 | 136 |
| Cusp forms | 248 | 128 | 120 |
| Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(744, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 744.2.bf.a | $128$ | $5.941$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(744, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(744, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(248, [\chi])\)\(^{\oplus 2}\)