Properties

Label 741.1
Level 741
Weight 1
Dimension 64
Nonzero newspaces 9
Newform subspaces 12
Sturm bound 40320
Trace bound 19

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 741 = 3 \cdot 13 \cdot 19 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 9 \)
Newform subspaces: \( 12 \)
Sturm bound: \(40320\)
Trace bound: \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(741))\).

Total New Old
Modular forms 938 440 498
Cusp forms 74 64 10
Eisenstein series 864 376 488

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 64 0 0 0

Trace form

\( 64 q + 2 q^{3} + 2 q^{4} - 2 q^{9} - 8 q^{12} - q^{13} - 2 q^{16} - 6 q^{19} - 6 q^{21} + 2 q^{25} - 4 q^{27} - 6 q^{28} + 2 q^{36} - 2 q^{39} - 10 q^{43} + 2 q^{48} - 8 q^{49} - 5 q^{52} - 2 q^{61} - 6 q^{63}+ \cdots - 6 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(741))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
741.1.c \(\chi_{741}(248, \cdot)\) None 0 1
741.1.e \(\chi_{741}(664, \cdot)\) None 0 1
741.1.f \(\chi_{741}(493, \cdot)\) None 0 1
741.1.h \(\chi_{741}(77, \cdot)\) None 0 1
741.1.n \(\chi_{741}(229, \cdot)\) None 0 2
741.1.p \(\chi_{741}(398, \cdot)\) 741.1.p.a 2 2
741.1.p.b 2
741.1.q \(\chi_{741}(373, \cdot)\) None 0 2
741.1.s \(\chi_{741}(68, \cdot)\) None 0 2
741.1.v \(\chi_{741}(322, \cdot)\) None 0 2
741.1.w \(\chi_{741}(311, \cdot)\) 741.1.w.a 2 2
741.1.w.b 2
741.1.x \(\chi_{741}(140, \cdot)\) None 0 2
741.1.y \(\chi_{741}(103, \cdot)\) None 0 2
741.1.ba \(\chi_{741}(88, \cdot)\) None 0 2
741.1.bc \(\chi_{741}(134, \cdot)\) None 0 2
741.1.bd \(\chi_{741}(191, \cdot)\) None 0 2
741.1.bg \(\chi_{741}(217, \cdot)\) None 0 2
741.1.bi \(\chi_{741}(274, \cdot)\) None 0 2
741.1.bk \(\chi_{741}(581, \cdot)\) None 0 2
741.1.bm \(\chi_{741}(482, \cdot)\) None 0 2
741.1.bn \(\chi_{741}(94, \cdot)\) None 0 2
741.1.bp \(\chi_{741}(296, \cdot)\) None 0 2
741.1.br \(\chi_{741}(316, \cdot)\) None 0 2
741.1.bv \(\chi_{741}(236, \cdot)\) None 0 4
741.1.bx \(\chi_{741}(7, \cdot)\) None 0 4
741.1.bz \(\chi_{741}(163, \cdot)\) None 0 4
741.1.cc \(\chi_{741}(8, \cdot)\) 741.1.cc.a 4 4
741.1.cc.b 4
741.1.ce \(\chi_{741}(227, \cdot)\) None 0 4
741.1.cg \(\chi_{741}(463, \cdot)\) None 0 4
741.1.ci \(\chi_{741}(58, \cdot)\) None 0 4
741.1.cj \(\chi_{741}(50, \cdot)\) None 0 4
741.1.cl \(\chi_{741}(166, \cdot)\) None 0 6
741.1.cm \(\chi_{741}(62, \cdot)\) 741.1.cm.a 6 6
741.1.cr \(\chi_{741}(22, \cdot)\) None 0 6
741.1.cs \(\chi_{741}(40, \cdot)\) None 0 6
741.1.ct \(\chi_{741}(92, \cdot)\) None 0 6
741.1.cu \(\chi_{741}(35, \cdot)\) 741.1.cu.a 6 6
741.1.cv \(\chi_{741}(17, \cdot)\) 741.1.cv.a 6 6
741.1.cw \(\chi_{741}(194, \cdot)\) None 0 6
741.1.cx \(\chi_{741}(181, \cdot)\) None 0 6
741.1.cy \(\chi_{741}(10, \cdot)\) None 0 6
741.1.de \(\chi_{741}(263, \cdot)\) 741.1.de.a 6 6
741.1.df \(\chi_{741}(211, \cdot)\) None 0 6
741.1.di \(\chi_{741}(2, \cdot)\) 741.1.di.a 12 12
741.1.dj \(\chi_{741}(85, \cdot)\) None 0 12
741.1.dk \(\chi_{741}(73, \cdot)\) None 0 12
741.1.dl \(\chi_{741}(86, \cdot)\) None 0 12
741.1.do \(\chi_{741}(28, \cdot)\) None 0 12
741.1.dp \(\chi_{741}(59, \cdot)\) 741.1.dp.a 12 12

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(741))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(741)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(57))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(247))\)\(^{\oplus 2}\)