Defining parameters
Level: | \( N \) | \(=\) | \( 738 = 2 \cdot 3^{2} \cdot 41 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 738.s (of order \(15\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 369 \) |
Character field: | \(\Q(\zeta_{15})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(252\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(738, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1040 | 336 | 704 |
Cusp forms | 976 | 336 | 640 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(738, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
738.2.s.a | $160$ | $5.893$ | None | \(-20\) | \(-2\) | \(2\) | \(2\) | ||
738.2.s.b | $176$ | $5.893$ | None | \(22\) | \(4\) | \(2\) | \(-2\) |
Decomposition of \(S_{2}^{\mathrm{old}}(738, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(738, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(369, [\chi])\)\(^{\oplus 2}\)