Properties

Label 728.2.ef
Level $728$
Weight $2$
Character orbit 728.ef
Rep. character $\chi_{728}(73,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $112$
Newform subspaces $1$
Sturm bound $224$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.ef (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 91 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(224\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(728, [\chi])\).

Total New Old
Modular forms 480 112 368
Cusp forms 416 112 304
Eisenstein series 64 0 64

Trace form

\( 112 q - 4 q^{7} + 56 q^{9} - 4 q^{11} - 16 q^{15} + 24 q^{19} + 8 q^{29} - 48 q^{31} + 24 q^{33} + 16 q^{35} - 4 q^{37} + 28 q^{39} + 36 q^{47} - 28 q^{53} - 56 q^{57} + 36 q^{61} + 12 q^{63} - 24 q^{65}+ \cdots - 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(728, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
728.2.ef.a 728.ef 91.ab $112$ $5.813$ None 728.2.ef.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(728, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(728, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(182, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(364, [\chi])\)\(^{\oplus 2}\)