Properties

Label 720.7.j
Level $720$
Weight $7$
Character orbit 720.j
Rep. character $\chi_{720}(559,\cdot)$
Character field $\Q$
Dimension $90$
Newform subspaces $9$
Sturm bound $1008$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 720.j (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(1008\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(7\), \(29\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(720, [\chi])\).

Total New Old
Modular forms 888 90 798
Cusp forms 840 90 750
Eisenstein series 48 0 48

Trace form

\( 90 q + 66 q^{5} + 43506 q^{25} - 81084 q^{29} + 187092 q^{41} + 2191806 q^{49} - 194220 q^{61} + 588576 q^{65} + 412200 q^{85} - 2268012 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(720, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
720.7.j.a 720.j 20.d $2$ $165.639$ \(\Q(\sqrt{5}) \) \(\Q(\sqrt{-5}) \) 80.7.h.a \(0\) \(0\) \(-250\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-5^{3}q^{5}-11\beta q^{7}-469\beta q^{23}+5^{6}q^{25}+\cdots\)
720.7.j.b 720.j 20.d $2$ $165.639$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 720.7.j.b \(0\) \(0\) \(-88\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(13\beta-44)q^{5}+184\beta q^{13}+110\beta q^{17}+\cdots\)
720.7.j.c 720.j 20.d $2$ $165.639$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 720.7.j.b \(0\) \(0\) \(88\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(-13\beta+44)q^{5}+184\beta q^{13}+\cdots\)
720.7.j.d 720.j 20.d $4$ $165.639$ \(\Q(\sqrt{6}, \sqrt{-19})\) None 80.7.h.b \(0\) \(0\) \(260\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(65+\beta _{2})q^{5}-13\beta _{1}q^{7}+\beta _{3}q^{11}+\cdots\)
720.7.j.e 720.j 20.d $8$ $165.639$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 720.7.j.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(5\beta _{3}+5\beta _{5})q^{5}+\beta _{1}q^{7}-\beta _{6}q^{11}+\cdots\)
720.7.j.f 720.j 20.d $12$ $165.639$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 80.7.h.c \(0\) \(0\) \(-76\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-6-\beta _{5})q^{5}+(\beta _{3}+\beta _{7})q^{7}+(\beta _{2}+\cdots)q^{11}+\cdots\)
720.7.j.g 720.j 20.d $12$ $165.639$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 240.7.j.a \(0\) \(0\) \(268\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(22+\beta _{1})q^{5}+(-\beta _{7}+\beta _{8})q^{7}-\beta _{6}q^{11}+\cdots\)
720.7.j.h 720.j 20.d $24$ $165.639$ None 240.7.j.b \(0\) \(0\) \(-136\) \(0\) $\mathrm{SU}(2)[C_{2}]$
720.7.j.i 720.j 20.d $24$ $165.639$ None 720.7.j.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{7}^{\mathrm{old}}(720, [\chi])\) into lower level spaces

\( S_{7}^{\mathrm{old}}(720, [\chi]) \simeq \) \(S_{7}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 2}\)