Properties

Label 72.10.d
Level $72$
Weight $10$
Character orbit 72.d
Rep. character $\chi_{72}(37,\cdot)$
Character field $\Q$
Dimension $44$
Newform subspaces $4$
Sturm bound $120$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 72.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(120\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(72, [\chi])\).

Total New Old
Modular forms 112 46 66
Cusp forms 104 44 60
Eisenstein series 8 2 6

Trace form

\( 44 q - 16 q^{2} + 256 q^{4} + 4800 q^{7} - 12460 q^{8} - 7556 q^{10} + 281540 q^{14} - 892656 q^{16} - 101996 q^{17} - 1652008 q^{20} - 372244 q^{22} + 53944 q^{23} - 16485884 q^{25} + 3235472 q^{26} - 4538056 q^{28}+ \cdots - 943274520 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(72, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
72.10.d.a 72.d 8.b $2$ $37.083$ \(\Q(\sqrt{-2}) \) \(\Q(\sqrt{-6}) \) 72.10.d.a \(0\) \(0\) \(0\) \(-8636\) $\mathrm{U}(1)[D_{2}]$ \(q-8\beta q^{2}-2^{9}q^{4}+119\beta q^{5}-4318q^{7}+\cdots\)
72.10.d.b 72.d 8.b $8$ $37.083$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 8.10.b.a \(18\) \(0\) \(0\) \(4800\) $\mathrm{SU}(2)[C_{2}]$ \(q+(2+\beta _{1})q^{2}+(-54+3\beta _{1}+\beta _{2})q^{4}+\cdots\)
72.10.d.c 72.d 8.b $16$ $37.083$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 72.10.d.c \(0\) \(0\) \(0\) \(18240\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(75+\beta _{2})q^{4}+(2\beta _{1}+\beta _{6}+\cdots)q^{5}+\cdots\)
72.10.d.d 72.d 8.b $18$ $37.083$ \(\mathbb{Q}[x]/(x^{18} + \cdots)\) None 24.10.d.a \(-34\) \(0\) \(0\) \(-9604\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2-\beta _{1})q^{2}+(29+2\beta _{1}+\beta _{5})q^{4}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(72, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(72, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 2}\)