Defining parameters
| Level: | \( N \) | \(=\) | \( 72 = 2^{3} \cdot 3^{2} \) |
| Weight: | \( k \) | \(=\) | \( 10 \) |
| Character orbit: | \([\chi]\) | \(=\) | 72.d (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(120\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(72, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 112 | 46 | 66 |
| Cusp forms | 104 | 44 | 60 |
| Eisenstein series | 8 | 2 | 6 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(72, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 72.10.d.a | $2$ | $37.083$ | \(\Q(\sqrt{-2}) \) | \(\Q(\sqrt{-6}) \) | \(0\) | \(0\) | \(0\) | \(-8636\) | \(q-8\beta q^{2}-2^{9}q^{4}+119\beta q^{5}-4318q^{7}+\cdots\) |
| 72.10.d.b | $8$ | $37.083$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(18\) | \(0\) | \(0\) | \(4800\) | \(q+(2+\beta _{1})q^{2}+(-54+3\beta _{1}+\beta _{2})q^{4}+\cdots\) |
| 72.10.d.c | $16$ | $37.083$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(18240\) | \(q+\beta _{1}q^{2}+(75+\beta _{2})q^{4}+(2\beta _{1}+\beta _{6}+\cdots)q^{5}+\cdots\) |
| 72.10.d.d | $18$ | $37.083$ | \(\mathbb{Q}[x]/(x^{18} + \cdots)\) | None | \(-34\) | \(0\) | \(0\) | \(-9604\) | \(q+(-2-\beta _{1})q^{2}+(29+2\beta _{1}+\beta _{5})q^{4}+\cdots\) |
Decomposition of \(S_{10}^{\mathrm{old}}(72, [\chi])\) into lower level spaces
\( S_{10}^{\mathrm{old}}(72, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 2}\)