Properties

Label 712.1.s.a.91.1
Level $712$
Weight $1$
Character 712.91
Analytic conductor $0.355$
Analytic rank $0$
Dimension $10$
Projective image $D_{11}$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 712 = 2^{3} \cdot 89 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 712.s (of order \(22\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.355334288995\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
Defining polynomial: \(x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{11}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{11} - \cdots)\)

Embedding invariants

Embedding label 91.1
Root \(-0.841254 - 0.540641i\) of defining polynomial
Character \(\chi\) \(=\) 712.91
Dual form 712.1.s.a.579.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.959493 + 0.281733i) q^{2} +(-0.239446 - 0.153882i) q^{3} +(0.841254 - 0.540641i) q^{4} +(0.273100 + 0.0801894i) q^{6} +(-0.654861 + 0.755750i) q^{8} +(-0.381761 - 0.835939i) q^{9} +O(q^{10})\) \(q+(-0.959493 + 0.281733i) q^{2} +(-0.239446 - 0.153882i) q^{3} +(0.841254 - 0.540641i) q^{4} +(0.273100 + 0.0801894i) q^{6} +(-0.654861 + 0.755750i) q^{8} +(-0.381761 - 0.835939i) q^{9} +(0.857685 + 0.989821i) q^{11} -0.284630 q^{12} +(0.415415 - 0.909632i) q^{16} +(1.84125 + 0.540641i) q^{17} +(0.601808 + 0.694523i) q^{18} +(-0.544078 - 1.19136i) q^{19} +(-1.10181 - 0.708089i) q^{22} +(0.273100 - 0.0801894i) q^{24} +(-0.142315 - 0.989821i) q^{25} +(-0.0777324 + 0.540641i) q^{27} +(-0.142315 + 0.989821i) q^{32} +(-0.0530529 - 0.368991i) q^{33} -1.91899 q^{34} +(-0.773100 - 0.496841i) q^{36} +(0.857685 + 0.989821i) q^{38} +(1.68251 - 1.08128i) q^{41} +(1.25667 + 1.45027i) q^{43} +(1.25667 + 0.368991i) q^{44} +(-0.239446 + 0.153882i) q^{48} +(-0.142315 - 0.989821i) q^{49} +(0.415415 + 0.909632i) q^{50} +(-0.357685 - 0.412791i) q^{51} +(-0.0777324 - 0.540641i) q^{54} +(-0.0530529 + 0.368991i) q^{57} +(-1.61435 + 1.03748i) q^{59} +(-0.142315 - 0.989821i) q^{64} +(0.154861 + 0.339098i) q^{66} +(0.698939 + 0.449181i) q^{67} +(1.84125 - 0.540641i) q^{68} +(0.881761 + 0.258908i) q^{72} +(-0.118239 + 0.258908i) q^{73} +(-0.118239 + 0.258908i) q^{75} +(-1.10181 - 0.708089i) q^{76} +(-0.500000 + 0.577031i) q^{81} +(-1.30972 + 1.51150i) q^{82} +(-1.61435 - 0.474017i) q^{83} +(-1.61435 - 1.03748i) q^{86} -1.30972 q^{88} +(-0.142315 + 0.989821i) q^{89} +(0.186393 - 0.215109i) q^{96} +(-0.544078 + 0.627899i) q^{97} +(0.415415 + 0.909632i) q^{98} +(0.500000 - 1.09485i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10q - q^{2} - 2q^{3} - q^{4} - 2q^{6} - q^{8} - 3q^{9} + O(q^{10}) \) \( 10q - q^{2} - 2q^{3} - q^{4} - 2q^{6} - q^{8} - 3q^{9} + 9q^{11} - 2q^{12} - q^{16} + 9q^{17} - 3q^{18} - 2q^{19} - 2q^{22} - 2q^{24} - q^{25} + 7q^{27} - q^{32} - 4q^{33} - 2q^{34} - 3q^{36} + 9q^{38} - 2q^{41} - 2q^{43} - 2q^{44} - 2q^{48} - q^{49} - q^{50} - 4q^{51} + 7q^{54} - 4q^{57} - 2q^{59} - q^{64} - 4q^{66} - 2q^{67} + 9q^{68} + 8q^{72} - 2q^{73} - 2q^{75} - 2q^{76} - 5q^{81} - 2q^{82} - 2q^{83} - 2q^{86} - 2q^{88} - q^{89} - 2q^{96} - 2q^{97} - q^{98} + 5q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/712\mathbb{Z}\right)^\times\).

\(n\) \(357\) \(535\) \(537\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{2}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(3\) −0.239446 0.153882i −0.239446 0.153882i 0.415415 0.909632i \(-0.363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(4\) 0.841254 0.540641i 0.841254 0.540641i
\(5\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(6\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i
\(7\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(8\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(9\) −0.381761 0.835939i −0.381761 0.835939i
\(10\) 0 0
\(11\) 0.857685 + 0.989821i 0.857685 + 0.989821i 1.00000 \(0\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(12\) −0.284630 −0.284630
\(13\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.415415 0.909632i 0.415415 0.909632i
\(17\) 1.84125 + 0.540641i 1.84125 + 0.540641i 1.00000 \(0\)
0.841254 + 0.540641i \(0.181818\pi\)
\(18\) 0.601808 + 0.694523i 0.601808 + 0.694523i
\(19\) −0.544078 1.19136i −0.544078 1.19136i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −1.10181 0.708089i −1.10181 0.708089i
\(23\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(24\) 0.273100 0.0801894i 0.273100 0.0801894i
\(25\) −0.142315 0.989821i −0.142315 0.989821i
\(26\) 0 0
\(27\) −0.0777324 + 0.540641i −0.0777324 + 0.540641i
\(28\) 0 0
\(29\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(30\) 0 0
\(31\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(32\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(33\) −0.0530529 0.368991i −0.0530529 0.368991i
\(34\) −1.91899 −1.91899
\(35\) 0 0
\(36\) −0.773100 0.496841i −0.773100 0.496841i
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0.857685 + 0.989821i 0.857685 + 0.989821i
\(39\) 0 0
\(40\) 0 0
\(41\) 1.68251 1.08128i 1.68251 1.08128i 0.841254 0.540641i \(-0.181818\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(42\) 0 0
\(43\) 1.25667 + 1.45027i 1.25667 + 1.45027i 0.841254 + 0.540641i \(0.181818\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(44\) 1.25667 + 0.368991i 1.25667 + 0.368991i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(48\) −0.239446 + 0.153882i −0.239446 + 0.153882i
\(49\) −0.142315 0.989821i −0.142315 0.989821i
\(50\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(51\) −0.357685 0.412791i −0.357685 0.412791i
\(52\) 0 0
\(53\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(54\) −0.0777324 0.540641i −0.0777324 0.540641i
\(55\) 0 0
\(56\) 0 0
\(57\) −0.0530529 + 0.368991i −0.0530529 + 0.368991i
\(58\) 0 0
\(59\) −1.61435 + 1.03748i −1.61435 + 1.03748i −0.654861 + 0.755750i \(0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(60\) 0 0
\(61\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −0.142315 0.989821i −0.142315 0.989821i
\(65\) 0 0
\(66\) 0.154861 + 0.339098i 0.154861 + 0.339098i
\(67\) 0.698939 + 0.449181i 0.698939 + 0.449181i 0.841254 0.540641i \(-0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(68\) 1.84125 0.540641i 1.84125 0.540641i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(72\) 0.881761 + 0.258908i 0.881761 + 0.258908i
\(73\) −0.118239 + 0.258908i −0.118239 + 0.258908i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(74\) 0 0
\(75\) −0.118239 + 0.258908i −0.118239 + 0.258908i
\(76\) −1.10181 0.708089i −1.10181 0.708089i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.577031i −0.500000 + 0.577031i
\(82\) −1.30972 + 1.51150i −1.30972 + 1.51150i
\(83\) −1.61435 0.474017i −1.61435 0.474017i −0.654861 0.755750i \(-0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.61435 1.03748i −1.61435 1.03748i
\(87\) 0 0
\(88\) −1.30972 −1.30972
\(89\) −0.142315 + 0.989821i −0.142315 + 0.989821i
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0.186393 0.215109i 0.186393 0.215109i
\(97\) −0.544078 + 0.627899i −0.544078 + 0.627899i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(98\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(99\) 0.500000 1.09485i 0.500000 1.09485i
\(100\) −0.654861 0.755750i −0.654861 0.755750i
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0.459493 + 0.295298i 0.459493 + 0.295298i
\(103\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.30972 1.51150i −1.30972 1.51150i −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(108\) 0.226900 + 0.496841i 0.226900 + 0.496841i
\(109\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.61435 + 0.474017i −1.61435 + 0.474017i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(114\) −0.0530529 0.368991i −0.0530529 0.368991i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 1.25667 1.45027i 1.25667 1.45027i
\(119\) 0 0
\(120\) 0 0
\(121\) −0.101808 + 0.708089i −0.101808 + 0.708089i
\(122\) 0 0
\(123\) −0.569259 −0.569259
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(128\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(129\) −0.0777324 0.540641i −0.0777324 0.540641i
\(130\) 0 0
\(131\) −0.239446 + 0.153882i −0.239446 + 0.153882i −0.654861 0.755750i \(-0.727273\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(132\) −0.244123 0.281733i −0.244123 0.281733i
\(133\) 0 0
\(134\) −0.797176 0.234072i −0.797176 0.234072i
\(135\) 0 0
\(136\) −1.61435 + 1.03748i −1.61435 + 1.03748i
\(137\) −1.61435 + 1.03748i −1.61435 + 1.03748i −0.654861 + 0.755750i \(0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(138\) 0 0
\(139\) −0.544078 1.19136i −0.544078 1.19136i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −0.918986 −0.918986
\(145\) 0 0
\(146\) 0.0405070 0.281733i 0.0405070 0.281733i
\(147\) −0.118239 + 0.258908i −0.118239 + 0.258908i
\(148\) 0 0
\(149\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(150\) 0.0405070 0.281733i 0.0405070 0.281733i
\(151\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(152\) 1.25667 + 0.368991i 1.25667 + 0.368991i
\(153\) −0.250975 1.74557i −0.250975 1.74557i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0.317178 0.694523i 0.317178 0.694523i
\(163\) 0.273100 0.0801894i 0.273100 0.0801894i −0.142315 0.989821i \(-0.545455\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(164\) 0.830830 1.81926i 0.830830 1.81926i
\(165\) 0 0
\(166\) 1.68251 1.68251
\(167\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(168\) 0 0
\(169\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(170\) 0 0
\(171\) −0.788201 + 0.909632i −0.788201 + 0.909632i
\(172\) 1.84125 + 0.540641i 1.84125 + 0.540641i
\(173\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.25667 0.368991i 1.25667 0.368991i
\(177\) 0.546200 0.546200
\(178\) −0.142315 0.989821i −0.142315 0.989821i
\(179\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(180\) 0 0
\(181\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.04408 + 2.28621i 1.04408 + 2.28621i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(192\) −0.118239 + 0.258908i −0.118239 + 0.258908i
\(193\) −0.797176 + 0.234072i −0.797176 + 0.234072i −0.654861 0.755750i \(-0.727273\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(194\) 0.345139 0.755750i 0.345139 0.755750i
\(195\) 0 0
\(196\) −0.654861 0.755750i −0.654861 0.755750i
\(197\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(198\) −0.171292 + 1.19136i −0.171292 + 1.19136i
\(199\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(200\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(201\) −0.0982369 0.215109i −0.0982369 0.215109i
\(202\) 0 0
\(203\) 0 0
\(204\) −0.524075 0.153882i −0.524075 0.153882i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.712591 1.56036i 0.712591 1.56036i
\(210\) 0 0
\(211\) 0.273100 + 1.89945i 0.273100 + 1.89945i 0.415415 + 0.909632i \(0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 1.68251 + 1.08128i 1.68251 + 1.08128i
\(215\) 0 0
\(216\) −0.357685 0.412791i −0.357685 0.412791i
\(217\) 0 0
\(218\) 0 0
\(219\) 0.0681534 0.0437995i 0.0681534 0.0437995i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(224\) 0 0
\(225\) −0.773100 + 0.496841i −0.773100 + 0.496841i
\(226\) 1.41542 0.909632i 1.41542 0.909632i
\(227\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i 1.00000 \(0\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(228\) 0.154861 + 0.339098i 0.154861 + 0.339098i
\(229\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.797176 + 1.74557i −0.797176 + 1.74557i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(240\) 0 0
\(241\) −1.61435 0.474017i −1.61435 0.474017i −0.654861 0.755750i \(-0.727273\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(242\) −0.101808 0.708089i −0.101808 0.708089i
\(243\) 0.732593 0.215109i 0.732593 0.215109i
\(244\) 0 0
\(245\) 0 0
\(246\) 0.546200 0.160379i 0.546200 0.160379i
\(247\) 0 0
\(248\) 0 0
\(249\) 0.313607 + 0.361922i 0.313607 + 0.361922i
\(250\) 0 0
\(251\) 0.698939 1.53046i 0.698939 1.53046i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.654861 0.755750i −0.654861 0.755750i
\(257\) −0.544078 + 1.19136i −0.544078 + 1.19136i 0.415415 + 0.909632i \(0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(258\) 0.226900 + 0.496841i 0.226900 + 0.496841i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0.186393 0.215109i 0.186393 0.215109i
\(263\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(264\) 0.313607 + 0.201543i 0.313607 + 0.201543i
\(265\) 0 0
\(266\) 0 0
\(267\) 0.186393 0.215109i 0.186393 0.215109i
\(268\) 0.830830 0.830830
\(269\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(270\) 0 0
\(271\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(272\) 1.25667 1.45027i 1.25667 1.45027i
\(273\) 0 0
\(274\) 1.25667 1.45027i 1.25667 1.45027i
\(275\) 0.857685 0.989821i 0.857685 0.989821i
\(276\) 0 0
\(277\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(278\) 0.857685 + 0.989821i 0.857685 + 0.989821i
\(279\) 0 0
\(280\) 0 0
\(281\) −0.544078 + 1.19136i −0.544078 + 1.19136i 0.415415 + 0.909632i \(0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(282\) 0 0
\(283\) 0.698939 1.53046i 0.698939 1.53046i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.881761 0.258908i 0.881761 0.258908i
\(289\) 2.25667 + 1.45027i 2.25667 + 1.45027i
\(290\) 0 0
\(291\) 0.226900 0.0666238i 0.226900 0.0666238i
\(292\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i
\(293\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(294\) 0.0405070 0.281733i 0.0405070 0.281733i
\(295\) 0 0
\(296\) 0 0
\(297\) −0.601808 + 0.386758i −0.601808 + 0.386758i
\(298\) 0 0
\(299\) 0 0
\(300\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −1.30972 −1.30972
\(305\) 0 0
\(306\) 0.732593 + 1.60416i 0.732593 + 1.60416i
\(307\) −0.239446 1.66538i −0.239446 1.66538i −0.654861 0.755750i \(-0.727273\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(312\) 0 0
\(313\) −0.544078 0.627899i −0.544078 0.627899i 0.415415 0.909632i \(-0.363636\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0.0810141 + 0.563465i 0.0810141 + 0.563465i
\(322\) 0 0
\(323\) −0.357685 2.48775i −0.357685 2.48775i
\(324\) −0.108660 + 0.755750i −0.108660 + 0.755750i
\(325\) 0 0
\(326\) −0.239446 + 0.153882i −0.239446 + 0.153882i
\(327\) 0 0
\(328\) −0.284630 + 1.97964i −0.284630 + 1.97964i
\(329\) 0 0
\(330\) 0 0
\(331\) 0.186393 + 1.29639i 0.186393 + 1.29639i 0.841254 + 0.540641i \(0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(332\) −1.61435 + 0.474017i −1.61435 + 0.474017i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −0.544078 1.19136i −0.544078 1.19136i −0.959493 0.281733i \(-0.909091\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(338\) −0.654861 0.755750i −0.654861 0.755750i
\(339\) 0.459493 + 0.134919i 0.459493 + 0.134919i
\(340\) 0 0
\(341\) 0 0
\(342\) 0.500000 1.09485i 0.500000 1.09485i
\(343\) 0 0
\(344\) −1.91899 −1.91899
\(345\) 0 0
\(346\) 0 0
\(347\) 0.698939 + 1.53046i 0.698939 + 1.53046i 0.841254 + 0.540641i \(0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(348\) 0 0
\(349\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.10181 + 0.708089i −1.10181 + 0.708089i
\(353\) 0.698939 + 0.449181i 0.698939 + 0.449181i 0.841254 0.540641i \(-0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(354\) −0.524075 + 0.153882i −0.524075 + 0.153882i
\(355\) 0 0
\(356\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(357\) 0 0
\(358\) −0.797176 + 0.234072i −0.797176 + 0.234072i
\(359\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(360\) 0 0
\(361\) −0.468468 + 0.540641i −0.468468 + 0.540641i
\(362\) 0 0
\(363\) 0.133340 0.153882i 0.133340 0.153882i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(368\) 0 0
\(369\) −1.54620 0.993683i −1.54620 0.993683i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(374\) −1.64589 1.89945i −1.64589 1.89945i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0.345139 + 0.755750i 0.345139 + 0.755750i 1.00000 \(0\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(384\) 0.0405070 0.281733i 0.0405070 0.281733i
\(385\) 0 0
\(386\) 0.698939 0.449181i 0.698939 0.449181i
\(387\) 0.732593 1.60416i 0.732593 1.60416i
\(388\) −0.118239 + 0.822373i −0.118239 + 0.822373i
\(389\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(393\) 0.0810141 0.0810141
\(394\) 0 0
\(395\) 0 0
\(396\) −0.171292 1.19136i −0.171292 1.19136i
\(397\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.959493 0.281733i −0.959493 0.281733i
\(401\) −0.797176 0.234072i −0.797176 0.234072i −0.142315 0.989821i \(-0.545455\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(402\) 0.154861 + 0.178719i 0.154861 + 0.178719i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0.546200 0.546200
\(409\) 0.698939 + 0.449181i 0.698939 + 0.449181i 0.841254 0.540641i \(-0.181818\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(410\) 0 0
\(411\) 0.546200 0.546200
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.0530529 + 0.368991i −0.0530529 + 0.368991i
\(418\) −0.244123 + 1.69791i −0.244123 + 1.69791i
\(419\) −0.797176 0.234072i −0.797176 0.234072i −0.142315 0.989821i \(-0.545455\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(420\) 0 0
\(421\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(422\) −0.797176 1.74557i −0.797176 1.74557i
\(423\) 0 0
\(424\) 0 0
\(425\) 0.273100 1.89945i 0.273100 1.89945i
\(426\) 0 0
\(427\) 0 0
\(428\) −1.91899 0.563465i −1.91899 0.563465i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(432\) 0.459493 + 0.295298i 0.459493 + 0.295298i
\(433\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −0.0530529 + 0.0612263i −0.0530529 + 0.0612263i
\(439\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(440\) 0 0
\(441\) −0.773100 + 0.496841i −0.773100 + 0.496841i
\(442\) 0 0
\(443\) −1.61435 + 0.474017i −1.61435 + 0.474017i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.41542 0.909632i 1.41542 0.909632i 0.415415 0.909632i \(-0.363636\pi\)
1.00000 \(0\)
\(450\) 0.601808 0.694523i 0.601808 0.694523i
\(451\) 2.51334 + 0.737982i 2.51334 + 0.737982i
\(452\) −1.10181 + 1.27155i −1.10181 + 1.27155i
\(453\) 0 0
\(454\) −0.118239 0.258908i −0.118239 0.258908i
\(455\) 0 0
\(456\) −0.244123 0.281733i −0.244123 0.281733i
\(457\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(458\) 0 0
\(459\) −0.435418 + 0.953431i −0.435418 + 0.953431i
\(460\) 0 0
\(461\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(462\) 0 0
\(463\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −1.61435 + 0.474017i −1.61435 + 0.474017i
\(467\) −1.61435 1.03748i −1.61435 1.03748i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0.273100 1.89945i 0.273100 1.89945i
\(473\) −0.357685 + 2.48775i −0.357685 + 2.48775i
\(474\) 0 0
\(475\) −1.10181 + 0.708089i −1.10181 + 0.708089i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 1.68251 1.68251
\(483\) 0 0
\(484\) 0.297176 + 0.650724i 0.297176 + 0.650724i
\(485\) 0 0
\(486\) −0.642315 + 0.412791i −0.642315 + 0.412791i
\(487\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(488\) 0 0
\(489\) −0.0777324 0.0228243i −0.0777324 0.0228243i
\(490\) 0 0
\(491\) 0.857685 + 0.989821i 0.857685 + 0.989821i 1.00000 \(0\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(492\) −0.478891 + 0.307765i −0.478891 + 0.307765i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −0.402869 0.258908i −0.402869 0.258908i
\(499\) −0.239446 1.66538i −0.239446 1.66538i −0.654861 0.755750i \(-0.727273\pi\)
0.415415 0.909632i \(-0.363636\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −0.239446 + 1.66538i −0.239446 + 1.66538i
\(503\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.0405070 0.281733i 0.0405070 0.281733i
\(508\) 0 0
\(509\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(513\) 0.686393 0.201543i 0.686393 0.201543i
\(514\) 0.186393 1.29639i 0.186393 1.29639i
\(515\) 0 0
\(516\) −0.357685 0.412791i −0.357685 0.412791i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.61435 1.03748i −1.61435 1.03748i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(522\) 0 0
\(523\) 0.186393 + 0.215109i 0.186393 + 0.215109i 0.841254 0.540641i \(-0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(524\) −0.118239 + 0.258908i −0.118239 + 0.258908i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −0.357685 0.105026i −0.357685 0.105026i
\(529\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(530\) 0 0
\(531\) 1.48357 + 0.953431i 1.48357 + 0.953431i
\(532\) 0 0
\(533\) 0 0
\(534\) −0.118239 + 0.258908i −0.118239 + 0.258908i
\(535\) 0 0
\(536\) −0.797176 + 0.234072i −0.797176 + 0.234072i
\(537\) −0.198939 0.127850i −0.198939 0.127850i
\(538\) 0 0
\(539\) 0.857685 0.989821i 0.857685 0.989821i
\(540\) 0 0
\(541\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −0.797176 + 1.74557i −0.797176 + 1.74557i
\(545\) 0 0
\(546\) 0 0
\(547\) −1.10181 0.708089i −1.10181 0.708089i −0.142315 0.989821i \(-0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(548\) −0.797176 + 1.74557i −0.797176 + 1.74557i
\(549\) 0 0
\(550\) −0.544078 + 1.19136i −0.544078 + 1.19136i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −1.10181 0.708089i −1.10181 0.708089i
\(557\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0.101808 0.708089i 0.101808 0.708089i
\(562\) 0.186393 1.29639i 0.186393 1.29639i
\(563\) 0.857685 0.989821i 0.857685 0.989821i −0.142315 0.989821i \(-0.545455\pi\)
1.00000 \(0\)
\(564\) 0 0
\(565\) 0 0
\(566\) −0.239446 + 1.66538i −0.239446 + 1.66538i
\(567\) 0 0
\(568\) 0 0
\(569\) −0.118239 0.822373i −0.118239 0.822373i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(570\) 0 0
\(571\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.773100 + 0.496841i −0.773100 + 0.496841i
\(577\) 0.857685 + 0.989821i 0.857685 + 0.989821i 1.00000 \(0\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(578\) −2.57385 0.755750i −2.57385 0.755750i
\(579\) 0.226900 + 0.0666238i 0.226900 + 0.0666238i
\(580\) 0 0
\(581\) 0 0
\(582\) −0.198939 + 0.127850i −0.198939 + 0.127850i
\(583\) 0 0
\(584\) −0.118239 0.258908i −0.118239 0.258908i
\(585\) 0 0
\(586\) 0 0
\(587\) −1.10181 0.708089i −1.10181 0.708089i −0.142315 0.989821i \(-0.545455\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(588\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.698939 0.449181i 0.698939 0.449181i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(594\) 0.468468 0.540641i 0.468468 0.540641i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(600\) −0.118239 0.258908i −0.118239 0.258908i
\(601\) −0.239446 0.153882i −0.239446 0.153882i 0.415415 0.909632i \(-0.363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(602\) 0 0
\(603\) 0.108660 0.755750i 0.108660 0.755750i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(608\) 1.25667 0.368991i 1.25667 0.368991i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −1.15486 1.33278i −1.15486 1.33278i
\(613\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(614\) 0.698939 + 1.53046i 0.698939 + 1.53046i
\(615\) 0 0
\(616\) 0 0
\(617\) 0.273100 + 0.0801894i 0.273100 + 0.0801894i 0.415415 0.909632i \(-0.363636\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(618\) 0 0
\(619\) −0.239446 + 0.153882i −0.239446 + 0.153882i −0.654861 0.755750i \(-0.727273\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.959493 + 0.281733i −0.959493 + 0.281733i
\(626\) 0.698939 + 0.449181i 0.698939 + 0.449181i
\(627\) −0.410738 + 0.263965i −0.410738 + 0.263965i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(632\) 0 0
\(633\) 0.226900 0.496841i 0.226900 0.496841i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.186393 + 0.215109i 0.186393 + 0.215109i 0.841254 0.540641i \(-0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(642\) −0.236479 0.517817i −0.236479 0.517817i
\(643\) −0.118239 + 0.822373i −0.118239 + 0.822373i 0.841254 + 0.540641i \(0.181818\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1.04408 + 2.28621i 1.04408 + 2.28621i
\(647\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(648\) −0.108660 0.755750i −0.108660 0.755750i
\(649\) −2.41153 0.708089i −2.41153 0.708089i
\(650\) 0 0
\(651\) 0 0
\(652\) 0.186393 0.215109i 0.186393 0.215109i
\(653\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −0.284630 1.97964i −0.284630 1.97964i
\(657\) 0.261571 0.261571
\(658\) 0 0
\(659\) −0.239446 0.153882i −0.239446 0.153882i 0.415415 0.909632i \(-0.363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(660\) 0 0
\(661\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(662\) −0.544078 1.19136i −0.544078 1.19136i
\(663\) 0 0
\(664\) 1.41542 0.909632i 1.41542 0.909632i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.830830 + 1.81926i 0.830830 + 1.81926i 0.415415 + 0.909632i \(0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(674\) 0.857685 + 0.989821i 0.857685 + 0.989821i
\(675\) 0.546200 0.546200
\(676\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(677\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(678\) −0.478891 −0.478891
\(679\) 0 0
\(680\) 0 0
\(681\) 0.0336545 0.0736930i 0.0336545 0.0736930i
\(682\) 0 0
\(683\) 0.186393 0.215109i 0.186393 0.215109i −0.654861 0.755750i \(-0.727273\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(684\) −0.171292 + 1.19136i −0.171292 + 1.19136i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 1.84125 0.540641i 1.84125 0.540641i
\(689\) 0 0
\(690\) 0 0
\(691\) −1.61435 + 0.474017i −1.61435 + 0.474017i −0.959493 0.281733i \(-0.909091\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −1.10181 1.27155i −1.10181 1.27155i
\(695\) 0 0
\(696\) 0 0
\(697\) 3.68251 1.08128i 3.68251 1.08128i
\(698\) 0 0
\(699\) −0.402869 0.258908i −0.402869 0.258908i
\(700\) 0 0
\(701\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0.857685 0.989821i 0.857685 0.989821i
\(705\) 0 0
\(706\) −0.797176 0.234072i −0.797176 0.234072i
\(707\) 0 0
\(708\) 0.459493 0.295298i 0.459493 0.295298i
\(709\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −0.654861 0.755750i −0.654861 0.755750i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.698939 0.449181i 0.698939 0.449181i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.654861 0.755750i \(-0.272727\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.297176 0.650724i 0.297176 0.650724i
\(723\) 0.313607 + 0.361922i 0.313607 + 0.361922i
\(724\) 0 0
\(725\) 0 0
\(726\) −0.0845850 + 0.185215i −0.0845850 + 0.185215i
\(727\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(728\) 0 0
\(729\) 0.524075 + 0.153882i 0.524075 + 0.153882i
\(730\) 0 0
\(731\) 1.52977 + 3.34973i 1.52977 + 3.34973i
\(732\) 0 0
\(733\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.154861 + 1.07708i 0.154861 + 1.07708i
\(738\) 1.76352 + 0.517817i 1.76352 + 0.517817i
\(739\) −0.118239 + 0.822373i −0.118239 + 0.822373i 0.841254 + 0.540641i \(0.181818\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0.220047 + 1.53046i 0.220047 + 1.53046i
\(748\) 2.11435 + 1.35881i 2.11435 + 1.35881i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(752\) 0 0
\(753\) −0.402869 + 0.258908i −0.402869 + 0.258908i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(758\) −0.544078 0.627899i −0.544078 0.627899i
\(759\) 0 0
\(760\) 0 0
\(761\) 0.186393 + 1.29639i 0.186393 + 1.29639i 0.841254 + 0.540641i \(0.181818\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0.0405070 + 0.281733i 0.0405070 + 0.281733i
\(769\) −0.239446 + 1.66538i −0.239446 + 1.66538i 0.415415 + 0.909632i \(0.363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(770\) 0 0
\(771\) 0.313607 0.201543i 0.313607 0.201543i
\(772\) −0.544078 + 0.627899i −0.544078 + 0.627899i
\(773\) 0 0 0.142315 0.989821i \(-0.454545\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(774\) −0.250975 + 1.74557i −0.250975 + 1.74557i
\(775\) 0 0
\(776\) −0.118239 0.822373i −0.118239 0.822373i
\(777\) 0 0
\(778\) 0 0
\(779\) −2.20362 1.41618i −2.20362 1.41618i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.959493 0.281733i −0.959493 0.281733i
\(785\) 0 0
\(786\) −0.0777324 + 0.0228243i −0.0777324 + 0.0228243i
\(787\) 0.698939 1.53046i 0.698939 1.53046i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0.500000 + 1.09485i 0.500000 + 1.09485i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(798\) 0 0
\(799\) 0 0