Defining parameters
| Level: | \( N \) | \(=\) | \( 7098 = 2 \cdot 3 \cdot 7 \cdot 13^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 7098.bm (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 91 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Sturm bound: | \(2912\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(7098, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 3024 | 412 | 2612 |
| Cusp forms | 2800 | 412 | 2388 |
| Eisenstein series | 224 | 0 | 224 |
Decomposition of \(S_{2}^{\mathrm{new}}(7098, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(7098, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(7098, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(182, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(273, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(546, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1183, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2366, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3549, [\chi])\)\(^{\oplus 2}\)