Defining parameters
Level: | \( N \) | = | \( 7 \) |
Weight: | \( k \) | = | \( 67 \) |
Nonzero newspaces: | \( 2 \) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(268\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{67}(\Gamma_1(7))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 135 | 135 | 0 |
Cusp forms | 129 | 129 | 0 |
Eisenstein series | 6 | 6 | 0 |
Trace form
Decomposition of \(S_{67}^{\mathrm{new}}(\Gamma_1(7))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
7.67.b | \(\chi_{7}(6, \cdot)\) | 7.67.b.a | 1 | 1 |
7.67.b.b | 42 | |||
7.67.d | \(\chi_{7}(3, \cdot)\) | 7.67.d.a | 86 | 2 |