Properties

Label 7.50
Level 7
Weight 50
Dimension 89
Nonzero newspaces 2
Newform subspaces 3
Sturm bound 200
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 7 \)
Weight: \( k \) = \( 50 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 3 \)
Sturm bound: \(200\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{50}(\Gamma_1(7))\).

Total New Old
Modular forms 101 93 8
Cusp forms 95 89 6
Eisenstein series 6 4 2

Trace form

\( 89 q + 48450333 q^{2} + 371479848324 q^{3} - 11\!\cdots\!19 q^{4} - 13\!\cdots\!26 q^{5} - 46\!\cdots\!34 q^{6} + 77\!\cdots\!41 q^{7} - 90\!\cdots\!05 q^{8} - 76\!\cdots\!19 q^{9} + 14\!\cdots\!22 q^{10}+ \cdots - 30\!\cdots\!76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{50}^{\mathrm{new}}(\Gamma_1(7))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
7.50.a \(\chi_{7}(1, \cdot)\) 7.50.a.a 12 1
7.50.a.b 13
7.50.c \(\chi_{7}(2, \cdot)\) 7.50.c.a 64 2

Decomposition of \(S_{50}^{\mathrm{old}}(\Gamma_1(7))\) into lower level spaces

\( S_{50}^{\mathrm{old}}(\Gamma_1(7)) \cong \) \(S_{50}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 2}\)