Properties

Label 7.39
Level 7
Weight 39
Dimension 73
Nonzero newspaces 2
Newform subspaces 3
Sturm bound 156
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 7 \)
Weight: \( k \) = \( 39 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 3 \)
Sturm bound: \(156\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{39}(\Gamma_1(7))\).

Total New Old
Modular forms 79 79 0
Cusp forms 73 73 0
Eisenstein series 6 6 0

Trace form

\( 73 q - 3 q^{2} + 1162261464 q^{3} + 549755813885 q^{4} + 19815543546960 q^{5} - 14\!\cdots\!59 q^{7} - 41\!\cdots\!19 q^{8} + 76\!\cdots\!21 q^{9} - 21\!\cdots\!80 q^{10} - 16\!\cdots\!70 q^{11} - 16\!\cdots\!32 q^{12}+ \cdots + 31\!\cdots\!10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{39}^{\mathrm{new}}(\Gamma_1(7))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
7.39.b \(\chi_{7}(6, \cdot)\) 7.39.b.a 1 1
7.39.b.b 24
7.39.d \(\chi_{7}(3, \cdot)\) 7.39.d.a 48 2