Properties

Label 6975.2.a.bf.1.1
Level $6975$
Weight $2$
Character 6975.1
Self dual yes
Analytic conductor $55.696$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6975,2,Mod(1,6975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6975, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6975.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6975 = 3^{2} \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6975.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,1,0,5,0,0,-8,3,0,0,-2,0,-4,8,0,5,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.6956554098\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.564.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 465)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.08613\) of defining polynomial
Character \(\chi\) \(=\) 6975.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.08613 q^{2} +2.35194 q^{4} -5.08613 q^{7} -0.734191 q^{8} +4.17226 q^{11} +1.08613 q^{13} +10.6103 q^{14} -3.17226 q^{16} +0.648061 q^{17} -2.70388 q^{19} -8.70388 q^{22} +7.52420 q^{23} -2.26581 q^{26} -11.9623 q^{28} -5.90645 q^{29} +1.00000 q^{31} +8.08613 q^{32} -1.35194 q^{34} -0.913870 q^{37} +5.64064 q^{38} -2.17226 q^{41} -8.17226 q^{43} +9.81290 q^{44} -15.6965 q^{46} -10.2281 q^{47} +18.8687 q^{49} +2.55451 q^{52} +5.52420 q^{53} +3.73419 q^{56} +12.3216 q^{58} -0.438069 q^{59} -2.00000 q^{61} -2.08613 q^{62} -10.5242 q^{64} -9.79001 q^{67} +1.52420 q^{68} -2.96969 q^{71} +1.25839 q^{73} +1.90645 q^{74} -6.35936 q^{76} -21.2207 q^{77} +10.8203 q^{79} +4.53162 q^{82} +14.2281 q^{83} +17.0484 q^{86} -3.06324 q^{88} -18.1903 q^{89} -5.52420 q^{91} +17.6965 q^{92} +21.3371 q^{94} +13.2207 q^{97} -39.3626 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + 5 q^{4} - 8 q^{7} + 3 q^{8} - 2 q^{11} - 4 q^{13} + 8 q^{14} + 5 q^{16} + 4 q^{17} - 4 q^{19} - 22 q^{22} + 6 q^{23} - 12 q^{26} - 10 q^{28} + 2 q^{29} + 3 q^{31} + 17 q^{32} - 2 q^{34} - 10 q^{37}+ \cdots - 57 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.08613 −1.47512 −0.737558 0.675283i \(-0.764021\pi\)
−0.737558 + 0.675283i \(0.764021\pi\)
\(3\) 0 0
\(4\) 2.35194 1.17597
\(5\) 0 0
\(6\) 0 0
\(7\) −5.08613 −1.92238 −0.961188 0.275893i \(-0.911026\pi\)
−0.961188 + 0.275893i \(0.911026\pi\)
\(8\) −0.734191 −0.259576
\(9\) 0 0
\(10\) 0 0
\(11\) 4.17226 1.25798 0.628992 0.777412i \(-0.283468\pi\)
0.628992 + 0.777412i \(0.283468\pi\)
\(12\) 0 0
\(13\) 1.08613 0.301238 0.150619 0.988592i \(-0.451873\pi\)
0.150619 + 0.988592i \(0.451873\pi\)
\(14\) 10.6103 2.83573
\(15\) 0 0
\(16\) −3.17226 −0.793065
\(17\) 0.648061 0.157178 0.0785889 0.996907i \(-0.474959\pi\)
0.0785889 + 0.996907i \(0.474959\pi\)
\(18\) 0 0
\(19\) −2.70388 −0.620312 −0.310156 0.950686i \(-0.600381\pi\)
−0.310156 + 0.950686i \(0.600381\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −8.70388 −1.85567
\(23\) 7.52420 1.56890 0.784452 0.620189i \(-0.212944\pi\)
0.784452 + 0.620189i \(0.212944\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −2.26581 −0.444362
\(27\) 0 0
\(28\) −11.9623 −2.26066
\(29\) −5.90645 −1.09680 −0.548400 0.836216i \(-0.684763\pi\)
−0.548400 + 0.836216i \(0.684763\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 8.08613 1.42944
\(33\) 0 0
\(34\) −1.35194 −0.231856
\(35\) 0 0
\(36\) 0 0
\(37\) −0.913870 −0.150239 −0.0751196 0.997175i \(-0.523934\pi\)
−0.0751196 + 0.997175i \(0.523934\pi\)
\(38\) 5.64064 0.915033
\(39\) 0 0
\(40\) 0 0
\(41\) −2.17226 −0.339250 −0.169625 0.985509i \(-0.554256\pi\)
−0.169625 + 0.985509i \(0.554256\pi\)
\(42\) 0 0
\(43\) −8.17226 −1.24626 −0.623129 0.782119i \(-0.714139\pi\)
−0.623129 + 0.782119i \(0.714139\pi\)
\(44\) 9.81290 1.47935
\(45\) 0 0
\(46\) −15.6965 −2.31432
\(47\) −10.2281 −1.49192 −0.745959 0.665992i \(-0.768009\pi\)
−0.745959 + 0.665992i \(0.768009\pi\)
\(48\) 0 0
\(49\) 18.8687 2.69553
\(50\) 0 0
\(51\) 0 0
\(52\) 2.55451 0.354247
\(53\) 5.52420 0.758807 0.379404 0.925231i \(-0.376129\pi\)
0.379404 + 0.925231i \(0.376129\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 3.73419 0.499002
\(57\) 0 0
\(58\) 12.3216 1.61791
\(59\) −0.438069 −0.0570318 −0.0285159 0.999593i \(-0.509078\pi\)
−0.0285159 + 0.999593i \(0.509078\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) −2.08613 −0.264939
\(63\) 0 0
\(64\) −10.5242 −1.31552
\(65\) 0 0
\(66\) 0 0
\(67\) −9.79001 −1.19604 −0.598020 0.801481i \(-0.704046\pi\)
−0.598020 + 0.801481i \(0.704046\pi\)
\(68\) 1.52420 0.184836
\(69\) 0 0
\(70\) 0 0
\(71\) −2.96969 −0.352437 −0.176219 0.984351i \(-0.556387\pi\)
−0.176219 + 0.984351i \(0.556387\pi\)
\(72\) 0 0
\(73\) 1.25839 0.147283 0.0736417 0.997285i \(-0.476538\pi\)
0.0736417 + 0.997285i \(0.476538\pi\)
\(74\) 1.90645 0.221620
\(75\) 0 0
\(76\) −6.35936 −0.729468
\(77\) −21.2207 −2.41832
\(78\) 0 0
\(79\) 10.8203 1.21738 0.608691 0.793408i \(-0.291695\pi\)
0.608691 + 0.793408i \(0.291695\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 4.53162 0.500433
\(83\) 14.2281 1.56173 0.780867 0.624697i \(-0.214778\pi\)
0.780867 + 0.624697i \(0.214778\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 17.0484 1.83838
\(87\) 0 0
\(88\) −3.06324 −0.326542
\(89\) −18.1903 −1.92817 −0.964086 0.265589i \(-0.914434\pi\)
−0.964086 + 0.265589i \(0.914434\pi\)
\(90\) 0 0
\(91\) −5.52420 −0.579093
\(92\) 17.6965 1.84498
\(93\) 0 0
\(94\) 21.3371 2.20075
\(95\) 0 0
\(96\) 0 0
\(97\) 13.2207 1.34235 0.671177 0.741297i \(-0.265789\pi\)
0.671177 + 0.741297i \(0.265789\pi\)
\(98\) −39.3626 −3.97622
\(99\) 0 0
\(100\) 0 0
\(101\) 16.8761 1.67924 0.839619 0.543175i \(-0.182778\pi\)
0.839619 + 0.543175i \(0.182778\pi\)
\(102\) 0 0
\(103\) 0.493887 0.0486641 0.0243321 0.999704i \(-0.492254\pi\)
0.0243321 + 0.999704i \(0.492254\pi\)
\(104\) −0.797427 −0.0781942
\(105\) 0 0
\(106\) −11.5242 −1.11933
\(107\) 9.69646 0.937392 0.468696 0.883359i \(-0.344724\pi\)
0.468696 + 0.883359i \(0.344724\pi\)
\(108\) 0 0
\(109\) −16.4003 −1.57087 −0.785434 0.618946i \(-0.787560\pi\)
−0.785434 + 0.618946i \(0.787560\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 16.1345 1.52457
\(113\) 12.5168 1.17748 0.588740 0.808323i \(-0.299624\pi\)
0.588740 + 0.808323i \(0.299624\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −13.8916 −1.28980
\(117\) 0 0
\(118\) 0.913870 0.0841285
\(119\) −3.29612 −0.302155
\(120\) 0 0
\(121\) 6.40776 0.582523
\(122\) 4.17226 0.377739
\(123\) 0 0
\(124\) 2.35194 0.211210
\(125\) 0 0
\(126\) 0 0
\(127\) 7.58002 0.672618 0.336309 0.941752i \(-0.390821\pi\)
0.336309 + 0.941752i \(0.390821\pi\)
\(128\) 5.78259 0.511114
\(129\) 0 0
\(130\) 0 0
\(131\) 7.67357 0.670443 0.335221 0.942139i \(-0.391189\pi\)
0.335221 + 0.942139i \(0.391189\pi\)
\(132\) 0 0
\(133\) 13.7523 1.19247
\(134\) 20.4232 1.76430
\(135\) 0 0
\(136\) −0.475800 −0.0407995
\(137\) −4.75970 −0.406648 −0.203324 0.979111i \(-0.565175\pi\)
−0.203324 + 0.979111i \(0.565175\pi\)
\(138\) 0 0
\(139\) 10.2839 0.872269 0.436134 0.899882i \(-0.356347\pi\)
0.436134 + 0.899882i \(0.356347\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 6.19515 0.519886
\(143\) 4.53162 0.378953
\(144\) 0 0
\(145\) 0 0
\(146\) −2.62517 −0.217260
\(147\) 0 0
\(148\) −2.14937 −0.176677
\(149\) 0.764504 0.0626306 0.0313153 0.999510i \(-0.490030\pi\)
0.0313153 + 0.999510i \(0.490030\pi\)
\(150\) 0 0
\(151\) −0.992582 −0.0807751 −0.0403876 0.999184i \(-0.512859\pi\)
−0.0403876 + 0.999184i \(0.512859\pi\)
\(152\) 1.98516 0.161018
\(153\) 0 0
\(154\) 44.2691 3.56730
\(155\) 0 0
\(156\) 0 0
\(157\) −15.9245 −1.27092 −0.635458 0.772135i \(-0.719189\pi\)
−0.635458 + 0.772135i \(0.719189\pi\)
\(158\) −22.5726 −1.79578
\(159\) 0 0
\(160\) 0 0
\(161\) −38.2691 −3.01602
\(162\) 0 0
\(163\) 1.25839 0.0985648 0.0492824 0.998785i \(-0.484307\pi\)
0.0492824 + 0.998785i \(0.484307\pi\)
\(164\) −5.10902 −0.398948
\(165\) 0 0
\(166\) −29.6816 −2.30374
\(167\) 23.5800 1.82468 0.912338 0.409437i \(-0.134275\pi\)
0.912338 + 0.409437i \(0.134275\pi\)
\(168\) 0 0
\(169\) −11.8203 −0.909255
\(170\) 0 0
\(171\) 0 0
\(172\) −19.2207 −1.46556
\(173\) −20.1723 −1.53367 −0.766834 0.641845i \(-0.778169\pi\)
−0.766834 + 0.641845i \(0.778169\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −13.2355 −0.997663
\(177\) 0 0
\(178\) 37.9474 2.84428
\(179\) 4.11164 0.307318 0.153659 0.988124i \(-0.450894\pi\)
0.153659 + 0.988124i \(0.450894\pi\)
\(180\) 0 0
\(181\) 10.3445 0.768902 0.384451 0.923145i \(-0.374391\pi\)
0.384451 + 0.923145i \(0.374391\pi\)
\(182\) 11.5242 0.854231
\(183\) 0 0
\(184\) −5.52420 −0.407249
\(185\) 0 0
\(186\) 0 0
\(187\) 2.70388 0.197727
\(188\) −24.0558 −1.75445
\(189\) 0 0
\(190\) 0 0
\(191\) −3.56193 −0.257732 −0.128866 0.991662i \(-0.541134\pi\)
−0.128866 + 0.991662i \(0.541134\pi\)
\(192\) 0 0
\(193\) 3.58002 0.257695 0.128848 0.991664i \(-0.458872\pi\)
0.128848 + 0.991664i \(0.458872\pi\)
\(194\) −27.5800 −1.98013
\(195\) 0 0
\(196\) 44.3781 3.16986
\(197\) 7.35194 0.523804 0.261902 0.965094i \(-0.415650\pi\)
0.261902 + 0.965094i \(0.415650\pi\)
\(198\) 0 0
\(199\) 25.1042 1.77959 0.889795 0.456360i \(-0.150847\pi\)
0.889795 + 0.456360i \(0.150847\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −35.2058 −2.47707
\(203\) 30.0410 2.10846
\(204\) 0 0
\(205\) 0 0
\(206\) −1.03031 −0.0717853
\(207\) 0 0
\(208\) −3.44549 −0.238902
\(209\) −11.2813 −0.780343
\(210\) 0 0
\(211\) −14.4051 −0.991691 −0.495846 0.868411i \(-0.665142\pi\)
−0.495846 + 0.868411i \(0.665142\pi\)
\(212\) 12.9926 0.892334
\(213\) 0 0
\(214\) −20.2281 −1.38276
\(215\) 0 0
\(216\) 0 0
\(217\) −5.08613 −0.345269
\(218\) 34.2132 2.31721
\(219\) 0 0
\(220\) 0 0
\(221\) 0.703878 0.0473480
\(222\) 0 0
\(223\) −11.4078 −0.763920 −0.381960 0.924179i \(-0.624751\pi\)
−0.381960 + 0.924179i \(0.624751\pi\)
\(224\) −41.1271 −2.74792
\(225\) 0 0
\(226\) −26.1116 −1.73692
\(227\) −15.3371 −1.01796 −0.508980 0.860779i \(-0.669977\pi\)
−0.508980 + 0.860779i \(0.669977\pi\)
\(228\) 0 0
\(229\) −15.8277 −1.04593 −0.522963 0.852355i \(-0.675174\pi\)
−0.522963 + 0.852355i \(0.675174\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 4.33646 0.284703
\(233\) −27.9293 −1.82971 −0.914856 0.403780i \(-0.867696\pi\)
−0.914856 + 0.403780i \(0.867696\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −1.03031 −0.0670676
\(237\) 0 0
\(238\) 6.87614 0.445714
\(239\) 10.4562 0.676353 0.338176 0.941083i \(-0.390190\pi\)
0.338176 + 0.941083i \(0.390190\pi\)
\(240\) 0 0
\(241\) −6.87614 −0.442931 −0.221466 0.975168i \(-0.571084\pi\)
−0.221466 + 0.975168i \(0.571084\pi\)
\(242\) −13.3674 −0.859290
\(243\) 0 0
\(244\) −4.70388 −0.301135
\(245\) 0 0
\(246\) 0 0
\(247\) −2.93676 −0.186862
\(248\) −0.734191 −0.0466212
\(249\) 0 0
\(250\) 0 0
\(251\) −7.39292 −0.466637 −0.233318 0.972400i \(-0.574958\pi\)
−0.233318 + 0.972400i \(0.574958\pi\)
\(252\) 0 0
\(253\) 31.3929 1.97366
\(254\) −15.8129 −0.992190
\(255\) 0 0
\(256\) 8.98516 0.561573
\(257\) −6.28870 −0.392279 −0.196139 0.980576i \(-0.562840\pi\)
−0.196139 + 0.980576i \(0.562840\pi\)
\(258\) 0 0
\(259\) 4.64806 0.288816
\(260\) 0 0
\(261\) 0 0
\(262\) −16.0081 −0.988981
\(263\) −14.6284 −0.902027 −0.451013 0.892517i \(-0.648937\pi\)
−0.451013 + 0.892517i \(0.648937\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −28.6890 −1.75904
\(267\) 0 0
\(268\) −23.0255 −1.40651
\(269\) 10.4381 0.636420 0.318210 0.948020i \(-0.396918\pi\)
0.318210 + 0.948020i \(0.396918\pi\)
\(270\) 0 0
\(271\) −32.1574 −1.95342 −0.976712 0.214554i \(-0.931170\pi\)
−0.976712 + 0.214554i \(0.931170\pi\)
\(272\) −2.05582 −0.124652
\(273\) 0 0
\(274\) 9.92935 0.599854
\(275\) 0 0
\(276\) 0 0
\(277\) 32.5397 1.95512 0.977560 0.210658i \(-0.0675607\pi\)
0.977560 + 0.210658i \(0.0675607\pi\)
\(278\) −21.4535 −1.28670
\(279\) 0 0
\(280\) 0 0
\(281\) 3.82774 0.228344 0.114172 0.993461i \(-0.463579\pi\)
0.114172 + 0.993461i \(0.463579\pi\)
\(282\) 0 0
\(283\) −6.03773 −0.358906 −0.179453 0.983767i \(-0.557433\pi\)
−0.179453 + 0.983767i \(0.557433\pi\)
\(284\) −6.98452 −0.414455
\(285\) 0 0
\(286\) −9.45355 −0.559000
\(287\) 11.0484 0.652166
\(288\) 0 0
\(289\) −16.5800 −0.975295
\(290\) 0 0
\(291\) 0 0
\(292\) 2.95966 0.173201
\(293\) 9.33710 0.545479 0.272740 0.962088i \(-0.412070\pi\)
0.272740 + 0.962088i \(0.412070\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0.670955 0.0389985
\(297\) 0 0
\(298\) −1.59485 −0.0923874
\(299\) 8.17226 0.472614
\(300\) 0 0
\(301\) 41.5652 2.39578
\(302\) 2.07065 0.119153
\(303\) 0 0
\(304\) 8.57741 0.491948
\(305\) 0 0
\(306\) 0 0
\(307\) −26.4184 −1.50778 −0.753890 0.657001i \(-0.771825\pi\)
−0.753890 + 0.657001i \(0.771825\pi\)
\(308\) −49.9097 −2.84387
\(309\) 0 0
\(310\) 0 0
\(311\) 6.36261 0.360790 0.180395 0.983594i \(-0.442262\pi\)
0.180395 + 0.983594i \(0.442262\pi\)
\(312\) 0 0
\(313\) −8.02289 −0.453481 −0.226740 0.973955i \(-0.572807\pi\)
−0.226740 + 0.973955i \(0.572807\pi\)
\(314\) 33.2207 1.87475
\(315\) 0 0
\(316\) 25.4487 1.43160
\(317\) 4.75970 0.267331 0.133666 0.991026i \(-0.457325\pi\)
0.133666 + 0.991026i \(0.457325\pi\)
\(318\) 0 0
\(319\) −24.6433 −1.37976
\(320\) 0 0
\(321\) 0 0
\(322\) 79.8342 4.44899
\(323\) −1.75228 −0.0974993
\(324\) 0 0
\(325\) 0 0
\(326\) −2.62517 −0.145395
\(327\) 0 0
\(328\) 1.59485 0.0880611
\(329\) 52.0213 2.86803
\(330\) 0 0
\(331\) −21.9804 −1.20815 −0.604075 0.796928i \(-0.706457\pi\)
−0.604075 + 0.796928i \(0.706457\pi\)
\(332\) 33.4636 1.83655
\(333\) 0 0
\(334\) −49.1910 −2.69161
\(335\) 0 0
\(336\) 0 0
\(337\) −28.1952 −1.53589 −0.767944 0.640517i \(-0.778720\pi\)
−0.767944 + 0.640517i \(0.778720\pi\)
\(338\) 24.6587 1.34126
\(339\) 0 0
\(340\) 0 0
\(341\) 4.17226 0.225941
\(342\) 0 0
\(343\) −60.3659 −3.25945
\(344\) 6.00000 0.323498
\(345\) 0 0
\(346\) 42.0820 2.26234
\(347\) 17.1090 0.918461 0.459230 0.888317i \(-0.348125\pi\)
0.459230 + 0.888317i \(0.348125\pi\)
\(348\) 0 0
\(349\) −2.53643 −0.135772 −0.0678859 0.997693i \(-0.521625\pi\)
−0.0678859 + 0.997693i \(0.521625\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 33.7374 1.79821
\(353\) −25.2255 −1.34262 −0.671308 0.741178i \(-0.734267\pi\)
−0.671308 + 0.741178i \(0.734267\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −42.7826 −2.26747
\(357\) 0 0
\(358\) −8.57741 −0.453330
\(359\) −29.7704 −1.57122 −0.785610 0.618722i \(-0.787651\pi\)
−0.785610 + 0.618722i \(0.787651\pi\)
\(360\) 0 0
\(361\) −11.6890 −0.615213
\(362\) −21.5800 −1.13422
\(363\) 0 0
\(364\) −12.9926 −0.680996
\(365\) 0 0
\(366\) 0 0
\(367\) 12.3445 0.644379 0.322189 0.946675i \(-0.395581\pi\)
0.322189 + 0.946675i \(0.395581\pi\)
\(368\) −23.8687 −1.24424
\(369\) 0 0
\(370\) 0 0
\(371\) −28.0968 −1.45871
\(372\) 0 0
\(373\) −34.3807 −1.78016 −0.890082 0.455800i \(-0.849353\pi\)
−0.890082 + 0.455800i \(0.849353\pi\)
\(374\) −5.64064 −0.291671
\(375\) 0 0
\(376\) 7.50936 0.387266
\(377\) −6.41518 −0.330398
\(378\) 0 0
\(379\) 22.3297 1.14700 0.573499 0.819206i \(-0.305585\pi\)
0.573499 + 0.819206i \(0.305585\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 7.43065 0.380185
\(383\) 15.4126 0.787545 0.393773 0.919208i \(-0.371170\pi\)
0.393773 + 0.919208i \(0.371170\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −7.46838 −0.380131
\(387\) 0 0
\(388\) 31.0942 1.57857
\(389\) 14.9549 0.758241 0.379121 0.925347i \(-0.376227\pi\)
0.379121 + 0.925347i \(0.376227\pi\)
\(390\) 0 0
\(391\) 4.87614 0.246597
\(392\) −13.8532 −0.699695
\(393\) 0 0
\(394\) −15.3371 −0.772672
\(395\) 0 0
\(396\) 0 0
\(397\) 33.0484 1.65865 0.829326 0.558765i \(-0.188725\pi\)
0.829326 + 0.558765i \(0.188725\pi\)
\(398\) −52.3707 −2.62510
\(399\) 0 0
\(400\) 0 0
\(401\) −3.56193 −0.177874 −0.0889372 0.996037i \(-0.528347\pi\)
−0.0889372 + 0.996037i \(0.528347\pi\)
\(402\) 0 0
\(403\) 1.08613 0.0541040
\(404\) 39.6917 1.97473
\(405\) 0 0
\(406\) −62.6694 −3.11023
\(407\) −3.81290 −0.188999
\(408\) 0 0
\(409\) −13.6555 −0.675220 −0.337610 0.941286i \(-0.609618\pi\)
−0.337610 + 0.941286i \(0.609618\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 1.16159 0.0572275
\(413\) 2.22808 0.109637
\(414\) 0 0
\(415\) 0 0
\(416\) 8.78259 0.430602
\(417\) 0 0
\(418\) 23.5342 1.15110
\(419\) 17.7948 0.869334 0.434667 0.900591i \(-0.356866\pi\)
0.434667 + 0.900591i \(0.356866\pi\)
\(420\) 0 0
\(421\) 8.70869 0.424435 0.212218 0.977222i \(-0.431931\pi\)
0.212218 + 0.977222i \(0.431931\pi\)
\(422\) 30.0510 1.46286
\(423\) 0 0
\(424\) −4.05582 −0.196968
\(425\) 0 0
\(426\) 0 0
\(427\) 10.1723 0.492270
\(428\) 22.8055 1.10234
\(429\) 0 0
\(430\) 0 0
\(431\) 16.2658 0.783496 0.391748 0.920072i \(-0.371870\pi\)
0.391748 + 0.920072i \(0.371870\pi\)
\(432\) 0 0
\(433\) 7.85063 0.377277 0.188639 0.982047i \(-0.439592\pi\)
0.188639 + 0.982047i \(0.439592\pi\)
\(434\) 10.6103 0.509312
\(435\) 0 0
\(436\) −38.5726 −1.84729
\(437\) −20.3445 −0.973210
\(438\) 0 0
\(439\) 16.2233 0.774294 0.387147 0.922018i \(-0.373461\pi\)
0.387147 + 0.922018i \(0.373461\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −1.46838 −0.0698438
\(443\) 20.7449 0.985618 0.492809 0.870138i \(-0.335970\pi\)
0.492809 + 0.870138i \(0.335970\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 23.7981 1.12687
\(447\) 0 0
\(448\) 53.5274 2.52893
\(449\) 24.7826 1.16956 0.584781 0.811191i \(-0.301180\pi\)
0.584781 + 0.811191i \(0.301180\pi\)
\(450\) 0 0
\(451\) −9.06324 −0.426771
\(452\) 29.4387 1.38468
\(453\) 0 0
\(454\) 31.9952 1.50161
\(455\) 0 0
\(456\) 0 0
\(457\) −27.8868 −1.30449 −0.652245 0.758008i \(-0.726173\pi\)
−0.652245 + 0.758008i \(0.726173\pi\)
\(458\) 33.0187 1.54286
\(459\) 0 0
\(460\) 0 0
\(461\) 29.4110 1.36981 0.684904 0.728634i \(-0.259844\pi\)
0.684904 + 0.728634i \(0.259844\pi\)
\(462\) 0 0
\(463\) 25.1239 1.16760 0.583802 0.811896i \(-0.301564\pi\)
0.583802 + 0.811896i \(0.301564\pi\)
\(464\) 18.7368 0.869834
\(465\) 0 0
\(466\) 58.2643 2.69904
\(467\) −34.8055 −1.61061 −0.805303 0.592864i \(-0.797997\pi\)
−0.805303 + 0.592864i \(0.797997\pi\)
\(468\) 0 0
\(469\) 49.7933 2.29924
\(470\) 0 0
\(471\) 0 0
\(472\) 0.321627 0.0148041
\(473\) −34.0968 −1.56777
\(474\) 0 0
\(475\) 0 0
\(476\) −7.75228 −0.355325
\(477\) 0 0
\(478\) −21.8129 −0.997699
\(479\) −35.7704 −1.63439 −0.817195 0.576362i \(-0.804472\pi\)
−0.817195 + 0.576362i \(0.804472\pi\)
\(480\) 0 0
\(481\) −0.992582 −0.0452578
\(482\) 14.3445 0.653375
\(483\) 0 0
\(484\) 15.0707 0.685030
\(485\) 0 0
\(486\) 0 0
\(487\) 21.5652 0.977212 0.488606 0.872505i \(-0.337506\pi\)
0.488606 + 0.872505i \(0.337506\pi\)
\(488\) 1.46838 0.0664705
\(489\) 0 0
\(490\) 0 0
\(491\) −26.7497 −1.20720 −0.603598 0.797289i \(-0.706267\pi\)
−0.603598 + 0.797289i \(0.706267\pi\)
\(492\) 0 0
\(493\) −3.82774 −0.172393
\(494\) 6.12647 0.275643
\(495\) 0 0
\(496\) −3.17226 −0.142439
\(497\) 15.1042 0.677517
\(498\) 0 0
\(499\) −10.9368 −0.489597 −0.244798 0.969574i \(-0.578722\pi\)
−0.244798 + 0.969574i \(0.578722\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 15.4226 0.688344
\(503\) −18.2281 −0.812750 −0.406375 0.913706i \(-0.633207\pi\)
−0.406375 + 0.913706i \(0.633207\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −65.4897 −2.91137
\(507\) 0 0
\(508\) 17.8277 0.790978
\(509\) −10.6103 −0.470295 −0.235147 0.971960i \(-0.575557\pi\)
−0.235147 + 0.971960i \(0.575557\pi\)
\(510\) 0 0
\(511\) −6.40034 −0.283134
\(512\) −30.3094 −1.33950
\(513\) 0 0
\(514\) 13.1191 0.578657
\(515\) 0 0
\(516\) 0 0
\(517\) −42.6742 −1.87681
\(518\) −9.69646 −0.426038
\(519\) 0 0
\(520\) 0 0
\(521\) 25.6768 1.12492 0.562461 0.826824i \(-0.309855\pi\)
0.562461 + 0.826824i \(0.309855\pi\)
\(522\) 0 0
\(523\) −20.1574 −0.881423 −0.440711 0.897649i \(-0.645274\pi\)
−0.440711 + 0.897649i \(0.645274\pi\)
\(524\) 18.0478 0.788420
\(525\) 0 0
\(526\) 30.5168 1.33059
\(527\) 0.648061 0.0282300
\(528\) 0 0
\(529\) 33.6136 1.46146
\(530\) 0 0
\(531\) 0 0
\(532\) 32.3445 1.40231
\(533\) −2.35936 −0.102195
\(534\) 0 0
\(535\) 0 0
\(536\) 7.18774 0.310463
\(537\) 0 0
\(538\) −21.7752 −0.938794
\(539\) 78.7252 3.39094
\(540\) 0 0
\(541\) 30.4610 1.30962 0.654810 0.755794i \(-0.272749\pi\)
0.654810 + 0.755794i \(0.272749\pi\)
\(542\) 67.0846 2.88153
\(543\) 0 0
\(544\) 5.24030 0.224676
\(545\) 0 0
\(546\) 0 0
\(547\) 11.8506 0.506697 0.253348 0.967375i \(-0.418468\pi\)
0.253348 + 0.967375i \(0.418468\pi\)
\(548\) −11.1945 −0.478206
\(549\) 0 0
\(550\) 0 0
\(551\) 15.9703 0.680359
\(552\) 0 0
\(553\) −55.0336 −2.34027
\(554\) −67.8820 −2.88403
\(555\) 0 0
\(556\) 24.1871 1.02576
\(557\) −3.95902 −0.167749 −0.0838745 0.996476i \(-0.526729\pi\)
−0.0838745 + 0.996476i \(0.526729\pi\)
\(558\) 0 0
\(559\) −8.87614 −0.375421
\(560\) 0 0
\(561\) 0 0
\(562\) −7.98516 −0.336834
\(563\) −13.6965 −0.577237 −0.288618 0.957444i \(-0.593196\pi\)
−0.288618 + 0.957444i \(0.593196\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 12.5955 0.529428
\(567\) 0 0
\(568\) 2.18032 0.0914841
\(569\) −21.4865 −0.900760 −0.450380 0.892837i \(-0.648711\pi\)
−0.450380 + 0.892837i \(0.648711\pi\)
\(570\) 0 0
\(571\) −3.46838 −0.145147 −0.0725736 0.997363i \(-0.523121\pi\)
−0.0725736 + 0.997363i \(0.523121\pi\)
\(572\) 10.6581 0.445637
\(573\) 0 0
\(574\) −23.0484 −0.962022
\(575\) 0 0
\(576\) 0 0
\(577\) −16.9516 −0.705704 −0.352852 0.935679i \(-0.614788\pi\)
−0.352852 + 0.935679i \(0.614788\pi\)
\(578\) 34.5881 1.43867
\(579\) 0 0
\(580\) 0 0
\(581\) −72.3659 −3.00224
\(582\) 0 0
\(583\) 23.0484 0.954567
\(584\) −0.923899 −0.0382312
\(585\) 0 0
\(586\) −19.4784 −0.804646
\(587\) 6.97294 0.287804 0.143902 0.989592i \(-0.454035\pi\)
0.143902 + 0.989592i \(0.454035\pi\)
\(588\) 0 0
\(589\) −2.70388 −0.111411
\(590\) 0 0
\(591\) 0 0
\(592\) 2.89903 0.119150
\(593\) −27.9097 −1.14611 −0.573057 0.819515i \(-0.694243\pi\)
−0.573057 + 0.819515i \(0.694243\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.79807 0.0736517
\(597\) 0 0
\(598\) −17.0484 −0.697161
\(599\) −30.4381 −1.24367 −0.621833 0.783150i \(-0.713612\pi\)
−0.621833 + 0.783150i \(0.713612\pi\)
\(600\) 0 0
\(601\) −25.7013 −1.04838 −0.524188 0.851602i \(-0.675631\pi\)
−0.524188 + 0.851602i \(0.675631\pi\)
\(602\) −86.7104 −3.53405
\(603\) 0 0
\(604\) −2.33449 −0.0949891
\(605\) 0 0
\(606\) 0 0
\(607\) 22.7119 0.921849 0.460925 0.887439i \(-0.347518\pi\)
0.460925 + 0.887439i \(0.347518\pi\)
\(608\) −21.8639 −0.886699
\(609\) 0 0
\(610\) 0 0
\(611\) −11.1090 −0.449423
\(612\) 0 0
\(613\) −30.4939 −1.23164 −0.615818 0.787888i \(-0.711174\pi\)
−0.615818 + 0.787888i \(0.711174\pi\)
\(614\) 55.1123 2.22415
\(615\) 0 0
\(616\) 15.5800 0.627737
\(617\) 10.6890 0.430325 0.215162 0.976578i \(-0.430972\pi\)
0.215162 + 0.976578i \(0.430972\pi\)
\(618\) 0 0
\(619\) −12.3397 −0.495975 −0.247987 0.968763i \(-0.579769\pi\)
−0.247987 + 0.968763i \(0.579769\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −13.2732 −0.532208
\(623\) 92.5185 3.70667
\(624\) 0 0
\(625\) 0 0
\(626\) 16.7368 0.668937
\(627\) 0 0
\(628\) −37.4535 −1.49456
\(629\) −0.592243 −0.0236143
\(630\) 0 0
\(631\) −23.1600 −0.921986 −0.460993 0.887404i \(-0.652507\pi\)
−0.460993 + 0.887404i \(0.652507\pi\)
\(632\) −7.94418 −0.316003
\(633\) 0 0
\(634\) −9.92935 −0.394345
\(635\) 0 0
\(636\) 0 0
\(637\) 20.4939 0.811997
\(638\) 51.4090 2.03530
\(639\) 0 0
\(640\) 0 0
\(641\) −1.63739 −0.0646731 −0.0323366 0.999477i \(-0.510295\pi\)
−0.0323366 + 0.999477i \(0.510295\pi\)
\(642\) 0 0
\(643\) 0.531618 0.0209650 0.0104825 0.999945i \(-0.496663\pi\)
0.0104825 + 0.999945i \(0.496663\pi\)
\(644\) −90.0065 −3.54675
\(645\) 0 0
\(646\) 3.65548 0.143823
\(647\) −9.86391 −0.387790 −0.193895 0.981022i \(-0.562112\pi\)
−0.193895 + 0.981022i \(0.562112\pi\)
\(648\) 0 0
\(649\) −1.82774 −0.0717451
\(650\) 0 0
\(651\) 0 0
\(652\) 2.95966 0.115909
\(653\) −43.8081 −1.71434 −0.857172 0.515031i \(-0.827780\pi\)
−0.857172 + 0.515031i \(0.827780\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 6.89098 0.269047
\(657\) 0 0
\(658\) −108.523 −4.23068
\(659\) −34.0639 −1.32694 −0.663470 0.748203i \(-0.730917\pi\)
−0.663470 + 0.748203i \(0.730917\pi\)
\(660\) 0 0
\(661\) 21.3567 0.830681 0.415341 0.909666i \(-0.363662\pi\)
0.415341 + 0.909666i \(0.363662\pi\)
\(662\) 45.8539 1.78216
\(663\) 0 0
\(664\) −10.4461 −0.405388
\(665\) 0 0
\(666\) 0 0
\(667\) −44.4413 −1.72077
\(668\) 55.4588 2.14576
\(669\) 0 0
\(670\) 0 0
\(671\) −8.34452 −0.322137
\(672\) 0 0
\(673\) −28.8990 −1.11398 −0.556988 0.830521i \(-0.688043\pi\)
−0.556988 + 0.830521i \(0.688043\pi\)
\(674\) 58.8188 2.26561
\(675\) 0 0
\(676\) −27.8007 −1.06926
\(677\) −27.8539 −1.07051 −0.535256 0.844690i \(-0.679785\pi\)
−0.535256 + 0.844690i \(0.679785\pi\)
\(678\) 0 0
\(679\) −67.2420 −2.58051
\(680\) 0 0
\(681\) 0 0
\(682\) −8.70388 −0.333289
\(683\) 15.7113 0.601176 0.300588 0.953754i \(-0.402817\pi\)
0.300588 + 0.953754i \(0.402817\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 125.931 4.80807
\(687\) 0 0
\(688\) 25.9245 0.988364
\(689\) 6.00000 0.228582
\(690\) 0 0
\(691\) 7.92454 0.301464 0.150732 0.988575i \(-0.451837\pi\)
0.150732 + 0.988575i \(0.451837\pi\)
\(692\) −47.4439 −1.80355
\(693\) 0 0
\(694\) −35.6917 −1.35484
\(695\) 0 0
\(696\) 0 0
\(697\) −1.40776 −0.0533226
\(698\) 5.29131 0.200279
\(699\) 0 0
\(700\) 0 0
\(701\) −34.0968 −1.28782 −0.643909 0.765102i \(-0.722689\pi\)
−0.643909 + 0.765102i \(0.722689\pi\)
\(702\) 0 0
\(703\) 2.47099 0.0931953
\(704\) −43.9097 −1.65491
\(705\) 0 0
\(706\) 52.6236 1.98052
\(707\) −85.8342 −3.22813
\(708\) 0 0
\(709\) −46.8826 −1.76071 −0.880357 0.474311i \(-0.842697\pi\)
−0.880357 + 0.474311i \(0.842697\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 13.3552 0.500507
\(713\) 7.52420 0.281783
\(714\) 0 0
\(715\) 0 0
\(716\) 9.67032 0.361397
\(717\) 0 0
\(718\) 62.1049 2.31773
\(719\) 4.51678 0.168448 0.0842238 0.996447i \(-0.473159\pi\)
0.0842238 + 0.996447i \(0.473159\pi\)
\(720\) 0 0
\(721\) −2.51197 −0.0935508
\(722\) 24.3849 0.907511
\(723\) 0 0
\(724\) 24.3297 0.904206
\(725\) 0 0
\(726\) 0 0
\(727\) −4.72677 −0.175306 −0.0876531 0.996151i \(-0.527937\pi\)
−0.0876531 + 0.996151i \(0.527937\pi\)
\(728\) 4.05582 0.150319
\(729\) 0 0
\(730\) 0 0
\(731\) −5.29612 −0.195884
\(732\) 0 0
\(733\) 1.87875 0.0693932 0.0346966 0.999398i \(-0.488954\pi\)
0.0346966 + 0.999398i \(0.488954\pi\)
\(734\) −25.7523 −0.950534
\(735\) 0 0
\(736\) 60.8417 2.24265
\(737\) −40.8465 −1.50460
\(738\) 0 0
\(739\) −16.1526 −0.594184 −0.297092 0.954849i \(-0.596017\pi\)
−0.297092 + 0.954849i \(0.596017\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 58.6136 2.15177
\(743\) −23.3175 −0.855435 −0.427717 0.903913i \(-0.640682\pi\)
−0.427717 + 0.903913i \(0.640682\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 71.7226 2.62595
\(747\) 0 0
\(748\) 6.35936 0.232521
\(749\) −49.3175 −1.80202
\(750\) 0 0
\(751\) −3.46838 −0.126563 −0.0632815 0.997996i \(-0.520157\pi\)
−0.0632815 + 0.997996i \(0.520157\pi\)
\(752\) 32.4461 1.18319
\(753\) 0 0
\(754\) 13.3829 0.487376
\(755\) 0 0
\(756\) 0 0
\(757\) −41.9326 −1.52407 −0.762033 0.647538i \(-0.775799\pi\)
−0.762033 + 0.647538i \(0.775799\pi\)
\(758\) −46.5826 −1.69196
\(759\) 0 0
\(760\) 0 0
\(761\) 13.1877 0.478055 0.239028 0.971013i \(-0.423171\pi\)
0.239028 + 0.971013i \(0.423171\pi\)
\(762\) 0 0
\(763\) 83.4143 3.01980
\(764\) −8.37744 −0.303085
\(765\) 0 0
\(766\) −32.1526 −1.16172
\(767\) −0.475800 −0.0171802
\(768\) 0 0
\(769\) −47.6816 −1.71944 −0.859722 0.510763i \(-0.829363\pi\)
−0.859722 + 0.510763i \(0.829363\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 8.41998 0.303042
\(773\) 30.6236 1.10145 0.550727 0.834685i \(-0.314350\pi\)
0.550727 + 0.834685i \(0.314350\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −9.70649 −0.348443
\(777\) 0 0
\(778\) −31.1978 −1.11849
\(779\) 5.87353 0.210441
\(780\) 0 0
\(781\) −12.3903 −0.443360
\(782\) −10.1723 −0.363759
\(783\) 0 0
\(784\) −59.8565 −2.13773
\(785\) 0 0
\(786\) 0 0
\(787\) −26.9219 −0.959663 −0.479832 0.877361i \(-0.659302\pi\)
−0.479832 + 0.877361i \(0.659302\pi\)
\(788\) 17.2913 0.615978
\(789\) 0 0
\(790\) 0 0
\(791\) −63.6620 −2.26356
\(792\) 0 0
\(793\) −2.17226 −0.0771392
\(794\) −68.9433 −2.44670
\(795\) 0 0
\(796\) 59.0436 2.09274
\(797\) −23.9197 −0.847280 −0.423640 0.905831i \(-0.639248\pi\)
−0.423640 + 0.905831i \(0.639248\pi\)
\(798\) 0 0
\(799\) −6.62842 −0.234497
\(800\) 0 0
\(801\) 0 0
\(802\) 7.43065 0.262385
\(803\) 5.25033 0.185280
\(804\) 0 0
\(805\) 0 0
\(806\) −2.26581 −0.0798097
\(807\) 0 0
\(808\) −12.3903 −0.435890
\(809\) −34.8336 −1.22468 −0.612342 0.790593i \(-0.709772\pi\)
−0.612342 + 0.790593i \(0.709772\pi\)
\(810\) 0 0
\(811\) −37.8277 −1.32831 −0.664156 0.747594i \(-0.731209\pi\)
−0.664156 + 0.747594i \(0.731209\pi\)
\(812\) 70.6546 2.47949
\(813\) 0 0
\(814\) 7.95421 0.278795
\(815\) 0 0
\(816\) 0 0
\(817\) 22.0968 0.773069
\(818\) 28.4871 0.996028
\(819\) 0 0
\(820\) 0 0
\(821\) 31.6439 1.10438 0.552190 0.833718i \(-0.313792\pi\)
0.552190 + 0.833718i \(0.313792\pi\)
\(822\) 0 0
\(823\) −16.9729 −0.591639 −0.295820 0.955244i \(-0.595593\pi\)
−0.295820 + 0.955244i \(0.595593\pi\)
\(824\) −0.362607 −0.0126320
\(825\) 0 0
\(826\) −4.64806 −0.161727
\(827\) −25.0532 −0.871185 −0.435593 0.900144i \(-0.643461\pi\)
−0.435593 + 0.900144i \(0.643461\pi\)
\(828\) 0 0
\(829\) 28.7497 0.998517 0.499259 0.866453i \(-0.333606\pi\)
0.499259 + 0.866453i \(0.333606\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −11.4307 −0.396287
\(833\) 12.2281 0.423678
\(834\) 0 0
\(835\) 0 0
\(836\) −26.5329 −0.917659
\(837\) 0 0
\(838\) −37.1223 −1.28237
\(839\) 7.83099 0.270356 0.135178 0.990821i \(-0.456839\pi\)
0.135178 + 0.990821i \(0.456839\pi\)
\(840\) 0 0
\(841\) 5.88617 0.202971
\(842\) −18.1675 −0.626092
\(843\) 0 0
\(844\) −33.8800 −1.16620
\(845\) 0 0
\(846\) 0 0
\(847\) −32.5907 −1.11983
\(848\) −17.5242 −0.601783
\(849\) 0 0
\(850\) 0 0
\(851\) −6.87614 −0.235711
\(852\) 0 0
\(853\) −35.1600 −1.20386 −0.601928 0.798550i \(-0.705601\pi\)
−0.601928 + 0.798550i \(0.705601\pi\)
\(854\) −21.2207 −0.726156
\(855\) 0 0
\(856\) −7.11905 −0.243324
\(857\) 10.6136 0.362553 0.181276 0.983432i \(-0.441977\pi\)
0.181276 + 0.983432i \(0.441977\pi\)
\(858\) 0 0
\(859\) 19.8491 0.677242 0.338621 0.940923i \(-0.390040\pi\)
0.338621 + 0.940923i \(0.390040\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −33.9326 −1.15575
\(863\) −9.03356 −0.307506 −0.153753 0.988109i \(-0.549136\pi\)
−0.153753 + 0.988109i \(0.549136\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −16.3774 −0.556528
\(867\) 0 0
\(868\) −11.9623 −0.406026
\(869\) 45.1452 1.53145
\(870\) 0 0
\(871\) −10.6332 −0.360293
\(872\) 12.0410 0.407759
\(873\) 0 0
\(874\) 42.4413 1.43560
\(875\) 0 0
\(876\) 0 0
\(877\) −33.6406 −1.13596 −0.567982 0.823041i \(-0.692276\pi\)
−0.567982 + 0.823041i \(0.692276\pi\)
\(878\) −33.8439 −1.14217
\(879\) 0 0
\(880\) 0 0
\(881\) −7.48647 −0.252226 −0.126113 0.992016i \(-0.540250\pi\)
−0.126113 + 0.992016i \(0.540250\pi\)
\(882\) 0 0
\(883\) −17.7374 −0.596912 −0.298456 0.954423i \(-0.596472\pi\)
−0.298456 + 0.954423i \(0.596472\pi\)
\(884\) 1.65548 0.0556798
\(885\) 0 0
\(886\) −43.2765 −1.45390
\(887\) 15.8687 0.532819 0.266410 0.963860i \(-0.414163\pi\)
0.266410 + 0.963860i \(0.414163\pi\)
\(888\) 0 0
\(889\) −38.5530 −1.29302
\(890\) 0 0
\(891\) 0 0
\(892\) −26.8304 −0.898347
\(893\) 27.6555 0.925455
\(894\) 0 0
\(895\) 0 0
\(896\) −29.4110 −0.982553
\(897\) 0 0
\(898\) −51.6997 −1.72524
\(899\) −5.90645 −0.196991
\(900\) 0 0
\(901\) 3.58002 0.119268
\(902\) 18.9071 0.629537
\(903\) 0 0
\(904\) −9.18971 −0.305645
\(905\) 0 0
\(906\) 0 0
\(907\) −8.55451 −0.284048 −0.142024 0.989863i \(-0.545361\pi\)
−0.142024 + 0.989863i \(0.545361\pi\)
\(908\) −36.0719 −1.19709
\(909\) 0 0
\(910\) 0 0
\(911\) 13.5800 0.449926 0.224963 0.974367i \(-0.427774\pi\)
0.224963 + 0.974367i \(0.427774\pi\)
\(912\) 0 0
\(913\) 59.3632 1.96464
\(914\) 58.1755 1.92427
\(915\) 0 0
\(916\) −37.2259 −1.22998
\(917\) −39.0288 −1.28884
\(918\) 0 0
\(919\) 52.3148 1.72571 0.862854 0.505454i \(-0.168675\pi\)
0.862854 + 0.505454i \(0.168675\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −61.3552 −2.02063
\(923\) −3.22547 −0.106168
\(924\) 0 0
\(925\) 0 0
\(926\) −52.4116 −1.72235
\(927\) 0 0
\(928\) −47.7603 −1.56781
\(929\) 5.37483 0.176343 0.0881713 0.996105i \(-0.471898\pi\)
0.0881713 + 0.996105i \(0.471898\pi\)
\(930\) 0 0
\(931\) −51.0187 −1.67207
\(932\) −65.6881 −2.15169
\(933\) 0 0
\(934\) 72.6088 2.37583
\(935\) 0 0
\(936\) 0 0
\(937\) −58.9433 −1.92559 −0.962796 0.270228i \(-0.912901\pi\)
−0.962796 + 0.270228i \(0.912901\pi\)
\(938\) −103.875 −3.39165
\(939\) 0 0
\(940\) 0 0
\(941\) 4.62517 0.150776 0.0753881 0.997154i \(-0.475980\pi\)
0.0753881 + 0.997154i \(0.475980\pi\)
\(942\) 0 0
\(943\) −16.3445 −0.532251
\(944\) 1.38967 0.0452299
\(945\) 0 0
\(946\) 71.1304 2.31265
\(947\) −23.8591 −0.775317 −0.387658 0.921803i \(-0.626716\pi\)
−0.387658 + 0.921803i \(0.626716\pi\)
\(948\) 0 0
\(949\) 1.36678 0.0443674
\(950\) 0 0
\(951\) 0 0
\(952\) 2.41998 0.0784321
\(953\) −15.8081 −0.512074 −0.256037 0.966667i \(-0.582417\pi\)
−0.256037 + 0.966667i \(0.582417\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 24.5922 0.795370
\(957\) 0 0
\(958\) 74.6216 2.41092
\(959\) 24.2084 0.781731
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 2.07065 0.0667606
\(963\) 0 0
\(964\) −16.1723 −0.520873
\(965\) 0 0
\(966\) 0 0
\(967\) −7.90320 −0.254150 −0.127075 0.991893i \(-0.540559\pi\)
−0.127075 + 0.991893i \(0.540559\pi\)
\(968\) −4.70452 −0.151209
\(969\) 0 0
\(970\) 0 0
\(971\) 44.3478 1.42319 0.711594 0.702591i \(-0.247974\pi\)
0.711594 + 0.702591i \(0.247974\pi\)
\(972\) 0 0
\(973\) −52.3052 −1.67683
\(974\) −44.9878 −1.44150
\(975\) 0 0
\(976\) 6.34452 0.203083
\(977\) 23.3781 0.747931 0.373966 0.927443i \(-0.377998\pi\)
0.373966 + 0.927443i \(0.377998\pi\)
\(978\) 0 0
\(979\) −75.8949 −2.42561
\(980\) 0 0
\(981\) 0 0
\(982\) 55.8033 1.78075
\(983\) −35.7374 −1.13985 −0.569924 0.821698i \(-0.693027\pi\)
−0.569924 + 0.821698i \(0.693027\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 7.98516 0.254299
\(987\) 0 0
\(988\) −6.90709 −0.219744
\(989\) −61.4897 −1.95526
\(990\) 0 0
\(991\) 61.4143 1.95089 0.975444 0.220247i \(-0.0706864\pi\)
0.975444 + 0.220247i \(0.0706864\pi\)
\(992\) 8.08613 0.256735
\(993\) 0 0
\(994\) −31.5094 −0.999416
\(995\) 0 0
\(996\) 0 0
\(997\) −52.8220 −1.67289 −0.836445 0.548051i \(-0.815370\pi\)
−0.836445 + 0.548051i \(0.815370\pi\)
\(998\) 22.8155 0.722212
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6975.2.a.bf.1.1 3
3.2 odd 2 2325.2.a.r.1.3 3
5.4 even 2 1395.2.a.j.1.3 3
15.2 even 4 2325.2.c.k.1024.5 6
15.8 even 4 2325.2.c.k.1024.2 6
15.14 odd 2 465.2.a.e.1.1 3
60.59 even 2 7440.2.a.bs.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
465.2.a.e.1.1 3 15.14 odd 2
1395.2.a.j.1.3 3 5.4 even 2
2325.2.a.r.1.3 3 3.2 odd 2
2325.2.c.k.1024.2 6 15.8 even 4
2325.2.c.k.1024.5 6 15.2 even 4
6975.2.a.bf.1.1 3 1.1 even 1 trivial
7440.2.a.bs.1.1 3 60.59 even 2