Defining parameters
Level: | \( N \) | \(=\) | \( 6936 = 2^{3} \cdot 3 \cdot 17^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6936.bi (of order \(16\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 68 \) |
Character field: | \(\Q(\zeta_{16})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(2448\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(6936, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 10368 | 0 | 10368 |
Cusp forms | 9216 | 0 | 9216 |
Eisenstein series | 1152 | 0 | 1152 |
Decomposition of \(S_{2}^{\mathrm{old}}(6936, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(6936, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(204, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1156, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3468, [\chi])\)\(^{\oplus 2}\)