Properties

Label 6936.2.bi
Level $6936$
Weight $2$
Character orbit 6936.bi
Rep. character $\chi_{6936}(1231,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $0$
Newform subspaces $0$
Sturm bound $2448$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 6936 = 2^{3} \cdot 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6936.bi (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 68 \)
Character field: \(\Q(\zeta_{16})\)
Newform subspaces: \( 0 \)
Sturm bound: \(2448\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(6936, [\chi])\).

Total New Old
Modular forms 10368 0 10368
Cusp forms 9216 0 9216
Eisenstein series 1152 0 1152

Decomposition of \(S_{2}^{\mathrm{old}}(6936, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(6936, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(204, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1156, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3468, [\chi])\)\(^{\oplus 2}\)