Properties

Label 6900.2.s
Level $6900$
Weight $2$
Character orbit 6900.s
Rep. character $\chi_{6900}(1243,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $792$
Sturm bound $2880$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 6900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6900.s (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q(i)\)
Sturm bound: \(2880\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(6900, [\chi])\).

Total New Old
Modular forms 2928 792 2136
Cusp forms 2832 792 2040
Eisenstein series 96 0 96

Decomposition of \(S_{2}^{\mathrm{new}}(6900, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(6900, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(6900, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1380, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2300, [\chi])\)\(^{\oplus 2}\)