# Properties

 Label 690.2.w.b.7.1 Level $690$ Weight $2$ Character 690.7 Analytic conductor $5.510$ Analytic rank $0$ Dimension $240$ CM no Inner twists $4$

# Learn more

## Newspace parameters

 Level: $$N$$ $$=$$ $$690 = 2 \cdot 3 \cdot 5 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 690.w (of order $$44$$, degree $$20$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$5.50967773947$$ Analytic rank: $$0$$ Dimension: $$240$$ Relative dimension: $$12$$ over $$\Q(\zeta_{44})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

## Embedding invariants

 Embedding label 7.1 Character $$\chi$$ $$=$$ 690.7 Dual form 690.2.w.b.493.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.997452 + 0.0713392i) q^{2} +(-0.212565 + 0.977147i) q^{3} +(0.989821 - 0.142315i) q^{4} +(-1.95274 + 1.08941i) q^{5} +(0.142315 - 0.989821i) q^{6} +(1.32241 - 2.42181i) q^{7} +(-0.977147 + 0.212565i) q^{8} +(-0.909632 - 0.415415i) q^{9} +O(q^{10})$$ $$q+(-0.997452 + 0.0713392i) q^{2} +(-0.212565 + 0.977147i) q^{3} +(0.989821 - 0.142315i) q^{4} +(-1.95274 + 1.08941i) q^{5} +(0.142315 - 0.989821i) q^{6} +(1.32241 - 2.42181i) q^{7} +(-0.977147 + 0.212565i) q^{8} +(-0.909632 - 0.415415i) q^{9} +(1.87005 - 1.22594i) q^{10} +(1.06157 - 0.919855i) q^{11} +(-0.0713392 + 0.997452i) q^{12} +(-0.373337 + 0.203857i) q^{13} +(-1.14627 + 2.50998i) q^{14} +(-0.649426 - 2.13968i) q^{15} +(0.959493 - 0.281733i) q^{16} +(3.65418 + 4.88142i) q^{17} +(0.936950 + 0.349464i) q^{18} +(-1.15607 - 8.04065i) q^{19} +(-1.77783 + 1.35622i) q^{20} +(2.08536 + 1.80698i) q^{21} +(-0.993243 + 0.993243i) q^{22} +(-2.54521 - 4.06472i) q^{23} -1.00000i q^{24} +(2.62639 - 4.25466i) q^{25} +(0.357843 - 0.229972i) q^{26} +(0.599278 - 0.800541i) q^{27} +(0.964288 - 2.58536i) q^{28} +(5.63176 + 0.809725i) q^{29} +(0.800414 + 2.08790i) q^{30} +(5.70892 + 3.66890i) q^{31} +(-0.936950 + 0.349464i) q^{32} +(0.673180 + 1.23284i) q^{33} +(-3.99311 - 4.60829i) q^{34} +(0.0560165 + 6.16980i) q^{35} +(-0.959493 - 0.281733i) q^{36} +(1.21628 + 3.26096i) q^{37} +(1.72674 + 7.93769i) q^{38} +(-0.119840 - 0.408138i) q^{39} +(1.67654 - 1.47960i) q^{40} +(-1.16152 - 2.54337i) q^{41} +(-2.20896 - 1.65361i) q^{42} +(2.34544 + 0.510219i) q^{43} +(0.919855 - 1.06157i) q^{44} +(2.22883 - 0.179762i) q^{45} +(2.82870 + 3.87279i) q^{46} +(9.19442 + 9.19442i) q^{47} +(0.0713392 + 0.997452i) q^{48} +(-0.331909 - 0.516460i) q^{49} +(-2.31617 + 4.43118i) q^{50} +(-5.54661 + 2.53305i) q^{51} +(-0.340525 + 0.254914i) q^{52} +(-2.54165 - 1.38785i) q^{53} +(-0.540641 + 0.841254i) q^{54} +(-1.07087 + 2.95272i) q^{55} +(-0.777394 + 2.64756i) q^{56} +(8.10264 + 0.579512i) q^{57} +(-5.67518 - 0.405897i) q^{58} +(2.60440 - 8.86977i) q^{59} +(-0.947324 - 2.02548i) q^{60} +(6.21286 - 9.66741i) q^{61} +(-5.95611 - 3.25228i) q^{62} +(-2.20896 + 1.65361i) q^{63} +(0.909632 - 0.415415i) q^{64} +(0.506946 - 0.804796i) q^{65} +(-0.759415 - 1.18167i) q^{66} +(0.616464 + 8.61929i) q^{67} +(4.31169 + 4.31169i) q^{68} +(4.51285 - 1.62302i) q^{69} +(-0.496022 - 6.15009i) q^{70} +(3.18033 - 3.67030i) q^{71} +(0.977147 + 0.212565i) q^{72} +(5.68363 + 4.25471i) q^{73} +(-1.44581 - 3.16589i) q^{74} +(3.59915 + 3.47076i) q^{75} +(-2.28861 - 7.79429i) q^{76} +(-0.823885 - 3.78734i) q^{77} +(0.148651 + 0.398549i) q^{78} +(4.39954 + 1.29182i) q^{79} +(-1.56672 + 1.59543i) q^{80} +(0.654861 + 0.755750i) q^{81} +(1.34000 + 2.45403i) q^{82} +(-3.65752 + 1.36418i) q^{83} +(2.32130 + 1.49181i) q^{84} +(-12.4535 - 5.55125i) q^{85} +(-2.37586 - 0.341597i) q^{86} +(-1.98834 + 5.33094i) q^{87} +(-0.841780 + 1.12449i) q^{88} +(-0.0406320 + 0.0261126i) q^{89} +(-2.21033 + 0.338307i) q^{90} +1.17373i q^{91} +(-3.09777 - 3.66112i) q^{92} +(-4.79857 + 4.79857i) q^{93} +(-9.82692 - 8.51507i) q^{94} +(11.0170 + 14.4419i) q^{95} +(-0.142315 - 0.989821i) q^{96} +(-2.63322 - 0.982139i) q^{97} +(0.367907 + 0.491466i) q^{98} +(-1.34776 + 0.395738i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$240q + 24q^{6} + O(q^{10})$$ $$240q + 24q^{6} - 44q^{10} + 24q^{16} - 44q^{21} + 96q^{23} + 16q^{25} + 16q^{26} + 44q^{28} - 16q^{31} + 44q^{33} + 16q^{35} - 24q^{36} + 44q^{37} - 88q^{43} + 8q^{46} + 96q^{47} - 24q^{50} - 24q^{55} + 44q^{57} - 16q^{58} + 88q^{61} + 56q^{62} - 88q^{65} + 132q^{67} - 56q^{70} + 16q^{71} + 48q^{73} + 24q^{81} - 24q^{82} + 44q^{85} - 16q^{87} + 44q^{88} - 124q^{92} + 32q^{93} + 20q^{95} - 24q^{96} - 56q^{98} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/690\mathbb{Z}\right)^\times$$.

 $$n$$ $$277$$ $$461$$ $$511$$ $$\chi(n)$$ $$e\left(\frac{1}{4}\right)$$ $$1$$ $$e\left(\frac{19}{22}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.997452 + 0.0713392i −0.705305 + 0.0504444i
$$3$$ −0.212565 + 0.977147i −0.122725 + 0.564156i
$$4$$ 0.989821 0.142315i 0.494911 0.0711574i
$$5$$ −1.95274 + 1.08941i −0.873292 + 0.487197i
$$6$$ 0.142315 0.989821i 0.0580998 0.404093i
$$7$$ 1.32241 2.42181i 0.499823 0.915358i −0.498988 0.866609i $$-0.666295\pi$$
0.998811 0.0487487i $$-0.0155233\pi$$
$$8$$ −0.977147 + 0.212565i −0.345474 + 0.0751532i
$$9$$ −0.909632 0.415415i −0.303211 0.138472i
$$10$$ 1.87005 1.22594i 0.591361 0.387676i
$$11$$ 1.06157 0.919855i 0.320075 0.277347i −0.479972 0.877284i $$-0.659353\pi$$
0.800047 + 0.599937i $$0.204808\pi$$
$$12$$ −0.0713392 + 0.997452i −0.0205938 + 0.287940i
$$13$$ −0.373337 + 0.203857i −0.103545 + 0.0565399i −0.530187 0.847881i $$-0.677878\pi$$
0.426642 + 0.904421i $$0.359696\pi$$
$$14$$ −1.14627 + 2.50998i −0.306353 + 0.670820i
$$15$$ −0.649426 2.13968i −0.167681 0.552464i
$$16$$ 0.959493 0.281733i 0.239873 0.0704331i
$$17$$ 3.65418 + 4.88142i 0.886270 + 1.18392i 0.982070 + 0.188517i $$0.0603681\pi$$
−0.0958003 + 0.995401i $$0.530541\pi$$
$$18$$ 0.936950 + 0.349464i 0.220841 + 0.0823695i
$$19$$ −1.15607 8.04065i −0.265221 1.84465i −0.491861 0.870674i $$-0.663683\pi$$
0.226640 0.973979i $$-0.427226\pi$$
$$20$$ −1.77783 + 1.35622i −0.397534 + 0.303260i
$$21$$ 2.08536 + 1.80698i 0.455064 + 0.394315i
$$22$$ −0.993243 + 0.993243i −0.211760 + 0.211760i
$$23$$ −2.54521 4.06472i −0.530713 0.847552i
$$24$$ 1.00000i 0.204124i
$$25$$ 2.62639 4.25466i 0.525277 0.850931i
$$26$$ 0.357843 0.229972i 0.0701787 0.0451011i
$$27$$ 0.599278 0.800541i 0.115331 0.154064i
$$28$$ 0.964288 2.58536i 0.182233 0.488586i
$$29$$ 5.63176 + 0.809725i 1.04579 + 0.150362i 0.643732 0.765251i $$-0.277385\pi$$
0.402060 + 0.915613i $$0.368294\pi$$
$$30$$ 0.800414 + 2.08790i 0.146135 + 0.381197i
$$31$$ 5.70892 + 3.66890i 1.02535 + 0.658954i 0.941322 0.337510i $$-0.109585\pi$$
0.0840297 + 0.996463i $$0.473221\pi$$
$$32$$ −0.936950 + 0.349464i −0.165631 + 0.0617771i
$$33$$ 0.673180 + 1.23284i 0.117186 + 0.214610i
$$34$$ −3.99311 4.60829i −0.684813 0.790316i
$$35$$ 0.0560165 + 6.16980i 0.00946852 + 1.04289i
$$36$$ −0.959493 0.281733i −0.159915 0.0469554i
$$37$$ 1.21628 + 3.26096i 0.199955 + 0.536099i 0.997766 0.0668083i $$-0.0212816\pi$$
−0.797811 + 0.602907i $$0.794009\pi$$
$$38$$ 1.72674 + 7.93769i 0.280114 + 1.28766i
$$39$$ −0.119840 0.408138i −0.0191898 0.0653544i
$$40$$ 1.67654 1.47960i 0.265085 0.233945i
$$41$$ −1.16152 2.54337i −0.181399 0.397208i 0.796987 0.603997i $$-0.206426\pi$$
−0.978386 + 0.206788i $$0.933699\pi$$
$$42$$ −2.20896 1.65361i −0.340850 0.255157i
$$43$$ 2.34544 + 0.510219i 0.357676 + 0.0778077i 0.387813 0.921738i $$-0.373231\pi$$
−0.0301368 + 0.999546i $$0.509594\pi$$
$$44$$ 0.919855 1.06157i 0.138673 0.160038i
$$45$$ 2.22883 0.179762i 0.332254 0.0267973i
$$46$$ 2.82870 + 3.87279i 0.417069 + 0.571011i
$$47$$ 9.19442 + 9.19442i 1.34114 + 1.34114i 0.894923 + 0.446221i $$0.147231\pi$$
0.446221 + 0.894923i $$0.352769\pi$$
$$48$$ 0.0713392 + 0.997452i 0.0102969 + 0.143970i
$$49$$ −0.331909 0.516460i −0.0474155 0.0737800i
$$50$$ −2.31617 + 4.43118i −0.327556 + 0.626663i
$$51$$ −5.54661 + 2.53305i −0.776681 + 0.354698i
$$52$$ −0.340525 + 0.254914i −0.0472223 + 0.0353502i
$$53$$ −2.54165 1.38785i −0.349123 0.190635i 0.295113 0.955462i $$-0.404643\pi$$
−0.644236 + 0.764827i $$0.722825\pi$$
$$54$$ −0.540641 + 0.841254i −0.0735719 + 0.114480i
$$55$$ −1.07087 + 2.95272i −0.144396 + 0.398144i
$$56$$ −0.777394 + 2.64756i −0.103884 + 0.353795i
$$57$$ 8.10264 + 0.579512i 1.07322 + 0.0767583i
$$58$$ −5.67518 0.405897i −0.745187 0.0532968i
$$59$$ 2.60440 8.86977i 0.339064 1.15475i −0.596802 0.802389i $$-0.703562\pi$$
0.935866 0.352357i $$-0.114620\pi$$
$$60$$ −0.947324 2.02548i −0.122299 0.261489i
$$61$$ 6.21286 9.66741i 0.795476 1.23778i −0.172069 0.985085i $$-0.555045\pi$$
0.967545 0.252700i $$-0.0813184\pi$$
$$62$$ −5.95611 3.25228i −0.756426 0.413040i
$$63$$ −2.20896 + 1.65361i −0.278303 + 0.208335i
$$64$$ 0.909632 0.415415i 0.113704 0.0519269i
$$65$$ 0.506946 0.804796i 0.0628789 0.0998227i
$$66$$ −0.759415 1.18167i −0.0934775 0.145454i
$$67$$ 0.616464 + 8.61929i 0.0753131 + 1.05301i 0.884829 + 0.465916i $$0.154275\pi$$
−0.809516 + 0.587098i $$0.800270\pi$$
$$68$$ 4.31169 + 4.31169i 0.522869 + 0.522869i
$$69$$ 4.51285 1.62302i 0.543283 0.195389i
$$70$$ −0.496022 6.15009i −0.0592860 0.735076i
$$71$$ 3.18033 3.67030i 0.377436 0.435585i −0.534970 0.844871i $$-0.679677\pi$$
0.912406 + 0.409287i $$0.134222\pi$$
$$72$$ 0.977147 + 0.212565i 0.115158 + 0.0250511i
$$73$$ 5.68363 + 4.25471i 0.665219 + 0.497977i 0.877714 0.479186i $$-0.159068\pi$$
−0.212495 + 0.977162i $$0.568159\pi$$
$$74$$ −1.44581 3.16589i −0.168072 0.368027i
$$75$$ 3.59915 + 3.47076i 0.415593 + 0.400769i
$$76$$ −2.28861 7.79429i −0.262521 0.894066i
$$77$$ −0.823885 3.78734i −0.0938904 0.431607i
$$78$$ 0.148651 + 0.398549i 0.0168314 + 0.0451268i
$$79$$ 4.39954 + 1.29182i 0.494986 + 0.145341i 0.519692 0.854354i $$-0.326047\pi$$
−0.0247057 + 0.999695i $$0.507865\pi$$
$$80$$ −1.56672 + 1.59543i −0.175164 + 0.178374i
$$81$$ 0.654861 + 0.755750i 0.0727623 + 0.0839722i
$$82$$ 1.34000 + 2.45403i 0.147979 + 0.271003i
$$83$$ −3.65752 + 1.36418i −0.401464 + 0.149739i −0.542082 0.840325i $$-0.682364\pi$$
0.140618 + 0.990064i $$0.455091\pi$$
$$84$$ 2.32130 + 1.49181i 0.253274 + 0.162770i
$$85$$ −12.4535 5.55125i −1.35077 0.602117i
$$86$$ −2.37586 0.341597i −0.256196 0.0368354i
$$87$$ −1.98834 + 5.33094i −0.213172 + 0.571536i
$$88$$ −0.841780 + 1.12449i −0.0897340 + 0.119871i
$$89$$ −0.0406320 + 0.0261126i −0.00430698 + 0.00276793i −0.542793 0.839867i $$-0.682633\pi$$
0.538486 + 0.842635i $$0.318997\pi$$
$$90$$ −2.21033 + 0.338307i −0.232989 + 0.0356607i
$$91$$ 1.17373i 0.123041i
$$92$$ −3.09777 3.66112i −0.322965 0.381698i
$$93$$ −4.79857 + 4.79857i −0.497589 + 0.497589i
$$94$$ −9.82692 8.51507i −1.01357 0.878263i
$$95$$ 11.0170 + 14.4419i 1.13033 + 1.48171i
$$96$$ −0.142315 0.989821i −0.0145249 0.101023i
$$97$$ −2.63322 0.982139i −0.267363 0.0997211i 0.212208 0.977225i $$-0.431935\pi$$
−0.479570 + 0.877503i $$0.659207\pi$$
$$98$$ 0.367907 + 0.491466i 0.0371642 + 0.0496456i
$$99$$ −1.34776 + 0.395738i −0.135455 + 0.0397731i
$$100$$ 1.99415 4.58512i 0.199415 0.458512i
$$101$$ 6.54239 14.3258i 0.650992 1.42547i −0.239691 0.970849i $$-0.577046\pi$$
0.890683 0.454624i $$-0.150226\pi$$
$$102$$ 5.35178 2.92229i 0.529905 0.289350i
$$103$$ 1.22367 17.1092i 0.120572 1.68582i −0.473018 0.881053i $$-0.656835\pi$$
0.593590 0.804768i $$-0.297710\pi$$
$$104$$ 0.321472 0.278557i 0.0315229 0.0273148i
$$105$$ −6.04071 1.25675i −0.589513 0.122646i
$$106$$ 2.63418 + 1.20299i 0.255855 + 0.116845i
$$107$$ −1.17346 + 0.255271i −0.113443 + 0.0246779i −0.268928 0.963160i $$-0.586669\pi$$
0.155486 + 0.987838i $$0.450306\pi$$
$$108$$ 0.479249 0.877679i 0.0461158 0.0844547i
$$109$$ −1.13944 + 7.92495i −0.109138 + 0.759073i 0.859596 + 0.510974i $$0.170715\pi$$
−0.968735 + 0.248099i $$0.920194\pi$$
$$110$$ 0.857499 3.02159i 0.0817593 0.288097i
$$111$$ −3.44498 + 0.495313i −0.326983 + 0.0470130i
$$112$$ 0.586538 2.69627i 0.0554227 0.254774i
$$113$$ −9.99612 + 0.714937i −0.940356 + 0.0672556i −0.533094 0.846056i $$-0.678971\pi$$
−0.407262 + 0.913311i $$0.633516\pi$$
$$114$$ −8.12334 −0.760820
$$115$$ 9.39826 + 5.16457i 0.876392 + 0.481598i
$$116$$ 5.68967 0.528273
$$117$$ 0.424285 0.0303454i 0.0392251 0.00280544i
$$118$$ −1.96500 + 9.03297i −0.180893 + 0.831552i
$$119$$ 16.6542 2.39451i 1.52669 0.219504i
$$120$$ 1.08941 + 1.95274i 0.0994488 + 0.178260i
$$121$$ −1.28467 + 8.93506i −0.116788 + 0.812278i
$$122$$ −5.50737 + 10.0860i −0.498614 + 0.913143i
$$123$$ 2.73215 0.594343i 0.246350 0.0535901i
$$124$$ 6.17295 + 2.81909i 0.554347 + 0.253162i
$$125$$ −0.493599 + 11.1694i −0.0441488 + 0.999025i
$$126$$ 2.08536 1.80698i 0.185779 0.160978i
$$127$$ 1.40397 19.6301i 0.124583 1.74189i −0.423881 0.905718i $$-0.639333\pi$$
0.548464 0.836174i $$-0.315213\pi$$
$$128$$ −0.877679 + 0.479249i −0.0775766 + 0.0423600i
$$129$$ −0.997118 + 2.18338i −0.0877913 + 0.192236i
$$130$$ −0.448241 + 0.838911i −0.0393133 + 0.0735773i
$$131$$ −7.37918 + 2.16672i −0.644722 + 0.189307i −0.587717 0.809066i $$-0.699973\pi$$
−0.0570048 + 0.998374i $$0.518155\pi$$
$$132$$ 0.841780 + 1.12449i 0.0732675 + 0.0978739i
$$133$$ −21.0017 7.83324i −1.82108 0.679228i
$$134$$ −1.22979 8.55335i −0.106237 0.738897i
$$135$$ −0.298118 + 2.21611i −0.0256579 + 0.190732i
$$136$$ −4.60829 3.99311i −0.395158 0.342406i
$$137$$ −3.48169 + 3.48169i −0.297461 + 0.297461i −0.840018 0.542558i $$-0.817456\pi$$
0.542558 + 0.840018i $$0.317456\pi$$
$$138$$ −4.38556 + 1.94083i −0.373324 + 0.165215i
$$139$$ 21.3396i 1.81000i −0.425410 0.905001i $$-0.639870\pi$$
0.425410 0.905001i $$-0.360130\pi$$
$$140$$ 0.933501 + 6.09903i 0.0788952 + 0.515462i
$$141$$ −10.9387 + 7.02988i −0.921206 + 0.592023i
$$142$$ −2.91039 + 3.88783i −0.244235 + 0.326260i
$$143$$ −0.208804 + 0.559824i −0.0174610 + 0.0468149i
$$144$$ −0.989821 0.142315i −0.0824851 0.0118596i
$$145$$ −11.8795 + 4.55410i −0.986537 + 0.378197i
$$146$$ −5.97268 3.83841i −0.494302 0.317669i
$$147$$ 0.575210 0.214542i 0.0474425 0.0176951i
$$148$$ 1.66798 + 3.05468i 0.137107 + 0.251093i
$$149$$ −10.4181 12.0232i −0.853487 0.984977i 0.146504 0.989210i $$-0.453198\pi$$
−0.999991 + 0.00423317i $$0.998653\pi$$
$$150$$ −3.83758 3.20515i −0.313337 0.261700i
$$151$$ 10.6427 + 3.12498i 0.866091 + 0.254307i 0.684452 0.729058i $$-0.260042\pi$$
0.181639 + 0.983365i $$0.441860\pi$$
$$152$$ 2.83882 + 7.61116i 0.230258 + 0.617347i
$$153$$ −1.29615 5.95830i −0.104787 0.481700i
$$154$$ 1.09197 + 3.71891i 0.0879936 + 0.299679i
$$155$$ −15.1450 0.945072i −1.21647 0.0759100i
$$156$$ −0.176704 0.386929i −0.0141477 0.0309791i
$$157$$ 10.3716 + 7.76412i 0.827747 + 0.619644i 0.926849 0.375433i $$-0.122506\pi$$
−0.0991019 + 0.995077i $$0.531597\pi$$
$$158$$ −4.48048 0.974669i −0.356448 0.0775405i
$$159$$ 1.89640 2.18856i 0.150394 0.173564i
$$160$$ 1.44891 1.70313i 0.114546 0.134644i
$$161$$ −13.2098 + 0.788797i −1.04108 + 0.0621659i
$$162$$ −0.707107 0.707107i −0.0555556 0.0555556i
$$163$$ 0.909317 + 12.7139i 0.0712232 + 0.995831i 0.899898 + 0.436100i $$0.143641\pi$$
−0.828675 + 0.559730i $$0.810905\pi$$
$$164$$ −1.51166 2.35219i −0.118041 0.183675i
$$165$$ −2.65761 1.67404i −0.206895 0.130324i
$$166$$ 3.55088 1.62163i 0.275602 0.125863i
$$167$$ 3.93009 2.94203i 0.304120 0.227661i −0.436308 0.899798i $$-0.643714\pi$$
0.740427 + 0.672136i $$0.234623\pi$$
$$168$$ −2.42181 1.32241i −0.186847 0.102026i
$$169$$ −6.93051 + 10.7841i −0.533116 + 0.829545i
$$170$$ 12.8178 + 4.64868i 0.983081 + 0.356537i
$$171$$ −2.28861 + 7.79429i −0.175014 + 0.596044i
$$172$$ 2.39418 + 0.171235i 0.182554 + 0.0130565i
$$173$$ −20.3001 1.45189i −1.54339 0.110385i −0.726493 0.687174i $$-0.758851\pi$$
−0.816894 + 0.576789i $$0.804306\pi$$
$$174$$ 1.60297 5.45920i 0.121521 0.413861i
$$175$$ −6.83081 11.9870i −0.516361 0.906131i
$$176$$ 0.759415 1.18167i 0.0572431 0.0890719i
$$177$$ 8.11346 + 4.43029i 0.609845 + 0.333001i
$$178$$ 0.0386656 0.0289447i 0.00289811 0.00216950i
$$179$$ −20.0852 + 9.17261i −1.50124 + 0.685593i −0.985269 0.171013i $$-0.945296\pi$$
−0.515971 + 0.856606i $$0.672569\pi$$
$$180$$ 2.18056 0.495128i 0.162529 0.0369046i
$$181$$ −5.00103 7.78176i −0.371724 0.578414i 0.604117 0.796896i $$-0.293526\pi$$
−0.975841 + 0.218482i $$0.929890\pi$$
$$182$$ −0.0837332 1.17074i −0.00620671 0.0867812i
$$183$$ 8.12584 + 8.12584i 0.600679 + 0.600679i
$$184$$ 3.35106 + 3.43080i 0.247043 + 0.252922i
$$185$$ −5.92759 5.04279i −0.435805 0.370753i
$$186$$ 4.44402 5.12867i 0.325851 0.376052i
$$187$$ 8.36936 + 1.82064i 0.612028 + 0.133139i
$$188$$ 10.4093 + 7.79233i 0.759179 + 0.568314i
$$189$$ −1.14627 2.50998i −0.0833787 0.182574i
$$190$$ −12.0193 13.6191i −0.871968 0.988036i
$$191$$ −2.53171 8.62222i −0.183188 0.623882i −0.998964 0.0455131i $$-0.985508\pi$$
0.815776 0.578369i $$-0.196310\pi$$
$$192$$ 0.212565 + 0.977147i 0.0153406 + 0.0705195i
$$193$$ 5.20476 + 13.9545i 0.374647 + 1.00447i 0.978295 + 0.207216i $$0.0664403\pi$$
−0.603649 + 0.797251i $$0.706287\pi$$
$$194$$ 2.69657 + 0.791785i 0.193603 + 0.0568469i
$$195$$ 0.678645 + 0.666433i 0.0485988 + 0.0477242i
$$196$$ −0.402030 0.463968i −0.0287164 0.0331405i
$$197$$ −5.48829 10.0511i −0.391025 0.716108i 0.605810 0.795609i $$-0.292849\pi$$
−0.996835 + 0.0795010i $$0.974667\pi$$
$$198$$ 1.31609 0.490877i 0.0935307 0.0348851i
$$199$$ −12.2869 7.89633i −0.870997 0.559756i 0.0270606 0.999634i $$-0.491385\pi$$
−0.898057 + 0.439878i $$0.855022\pi$$
$$200$$ −1.66197 + 4.71570i −0.117519 + 0.333450i
$$201$$ −8.55335 1.22979i −0.603307 0.0867425i
$$202$$ −5.50373 + 14.7561i −0.387241 + 1.03823i
$$203$$ 9.40848 12.5683i 0.660346 0.882119i
$$204$$ −5.12967 + 3.29664i −0.359148 + 0.230811i
$$205$$ 5.03892 + 3.70118i 0.351933 + 0.258502i
$$206$$ 17.1529i 1.19510i
$$207$$ 0.626659 + 4.75471i 0.0435558 + 0.330475i
$$208$$ −0.300781 + 0.300781i −0.0208554 + 0.0208554i
$$209$$ −8.62348 7.47229i −0.596499 0.516869i
$$210$$ 6.11497 + 0.822608i 0.421973 + 0.0567653i
$$211$$ −0.237553 1.65221i −0.0163538 0.113743i 0.980009 0.198951i $$-0.0637536\pi$$
−0.996363 + 0.0852082i $$0.972844\pi$$
$$212$$ −2.71329 1.01201i −0.186350 0.0695049i
$$213$$ 2.91039 + 3.88783i 0.199417 + 0.266390i
$$214$$ 1.15226 0.338334i 0.0787668 0.0231280i
$$215$$ −5.13587 + 1.55881i −0.350263 + 0.106310i
$$216$$ −0.415415 + 0.909632i −0.0282654 + 0.0618926i
$$217$$ 16.4349 8.97413i 1.11567 0.609203i
$$218$$ 0.571174 7.98605i 0.0386848 0.540884i
$$219$$ −5.36562 + 4.64934i −0.362575 + 0.314173i
$$220$$ −0.639757 + 3.07506i −0.0431324 + 0.207321i
$$221$$ −2.35935 1.07748i −0.158707 0.0724792i
$$222$$ 3.40087 0.739813i 0.228251 0.0496530i
$$223$$ −0.527236 + 0.965561i −0.0353064 + 0.0646588i −0.894737 0.446594i $$-0.852637\pi$$
0.859430 + 0.511253i $$0.170819\pi$$
$$224$$ −0.392694 + 2.73125i −0.0262380 + 0.182489i
$$225$$ −4.15649 + 2.77913i −0.277100 + 0.185275i
$$226$$ 9.91965 1.42623i 0.659845 0.0948714i
$$227$$ 1.35726 6.23920i 0.0900842 0.414110i −0.909916 0.414793i $$-0.863854\pi$$
1.00000 0.000683157i $$0.000217456\pi$$
$$228$$ 8.10264 0.579512i 0.536610 0.0383791i
$$229$$ −19.0008 −1.25561 −0.627803 0.778373i $$-0.716045\pi$$
−0.627803 + 0.778373i $$0.716045\pi$$
$$230$$ −9.74275 4.48094i −0.642418 0.295465i
$$231$$ 3.87592 0.255017
$$232$$ −5.67518 + 0.405897i −0.372594 + 0.0266484i
$$233$$ 1.44186 6.62813i 0.0944594 0.434223i −0.905492 0.424363i $$-0.860498\pi$$
0.999951 0.00985959i $$-0.00313846\pi$$
$$234$$ −0.421039 + 0.0605362i −0.0275242 + 0.00395738i
$$235$$ −27.9708 7.93785i −1.82461 0.517808i
$$236$$ 1.31559 9.15013i 0.0856377 0.595623i
$$237$$ −2.19749 + 4.02440i −0.142742 + 0.261413i
$$238$$ −16.4409 + 3.57650i −1.06571 + 0.231830i
$$239$$ 26.6353 + 12.1639i 1.72289 + 0.786820i 0.994858 + 0.101282i $$0.0322943\pi$$
0.728037 + 0.685538i $$0.240433\pi$$
$$240$$ −1.22594 1.87005i −0.0791339 0.120711i
$$241$$ −0.709128 + 0.614463i −0.0456789 + 0.0395810i −0.677401 0.735614i $$-0.736894\pi$$
0.631722 + 0.775195i $$0.282348\pi$$
$$242$$ 0.643974 9.00394i 0.0413962 0.578795i
$$243$$ −0.877679 + 0.479249i −0.0563031 + 0.0307438i
$$244$$ 4.77381 10.4532i 0.305612 0.669197i
$$245$$ 1.21077 + 0.646928i 0.0773530 + 0.0413307i
$$246$$ −2.68279 + 0.787738i −0.171048 + 0.0502243i
$$247$$ 2.07075 + 2.76620i 0.131759 + 0.176009i
$$248$$ −6.35833 2.37153i −0.403754 0.150593i
$$249$$ −0.555546 3.86391i −0.0352063 0.244865i
$$250$$ −0.304478 11.1762i −0.0192569 0.706845i
$$251$$ 16.7160 + 14.4845i 1.05510 + 0.914253i 0.996464 0.0840257i $$-0.0267778\pi$$
0.0586411 + 0.998279i $$0.481323\pi$$
$$252$$ −1.95114 + 1.95114i −0.122910 + 0.122910i
$$253$$ −6.44086 1.97375i −0.404934 0.124089i
$$254$$ 19.6803i 1.23485i
$$255$$ 8.07157 10.9889i 0.505461 0.688152i
$$256$$ 0.841254 0.540641i 0.0525783 0.0337901i
$$257$$ 0.420247 0.561384i 0.0262143 0.0350182i −0.787243 0.616643i $$-0.788492\pi$$
0.813457 + 0.581625i $$0.197583\pi$$
$$258$$ 0.838816 2.24895i 0.0522224 0.140014i
$$259$$ 9.50584 + 1.36673i 0.590664 + 0.0849247i
$$260$$ 0.387252 0.868750i 0.0240163 0.0538776i
$$261$$ −4.78646 3.07607i −0.296274 0.190404i
$$262$$ 7.20581 2.68763i 0.445176 0.166042i
$$263$$ 1.01353 + 1.85614i 0.0624969 + 0.114454i 0.907060 0.421002i $$-0.138321\pi$$
−0.844563 + 0.535456i $$0.820140\pi$$
$$264$$ −0.919855 1.06157i −0.0566131 0.0653351i
$$265$$ 6.47512 0.0587885i 0.397763 0.00361135i
$$266$$ 21.5070 + 6.31503i 1.31868 + 0.387200i
$$267$$ −0.0168789 0.0452540i −0.00103297 0.00276950i
$$268$$ 1.83684 + 8.44383i 0.112203 + 0.515789i
$$269$$ −1.75446 5.97516i −0.106972 0.364312i 0.888558 0.458765i $$-0.151708\pi$$
−0.995529 + 0.0944531i $$0.969890\pi$$
$$270$$ 0.139264 2.23173i 0.00847532 0.135819i
$$271$$ 13.5030 + 29.5675i 0.820251 + 1.79610i 0.554822 + 0.831969i $$0.312786\pi$$
0.265429 + 0.964130i $$0.414486\pi$$
$$272$$ 4.88142 + 3.65418i 0.295979 + 0.221567i
$$273$$ −1.14691 0.249495i −0.0694141 0.0151001i
$$274$$ 3.22443 3.72120i 0.194795 0.224806i
$$275$$ −1.12558 6.93250i −0.0678747 0.418046i
$$276$$ 4.23593 2.24875i 0.254973 0.135359i
$$277$$ −5.91674 5.91674i −0.355503 0.355503i 0.506649 0.862152i $$-0.330884\pi$$
−0.862152 + 0.506649i $$0.830884\pi$$
$$278$$ 1.52235 + 21.2852i 0.0913045 + 1.27660i
$$279$$ −3.66890 5.70892i −0.219651 0.341784i
$$280$$ −1.36622 6.01689i −0.0816474 0.359578i
$$281$$ 17.0485 7.78579i 1.01703 0.464461i 0.164075 0.986448i $$-0.447536\pi$$
0.852954 + 0.521987i $$0.174809\pi$$
$$282$$ 10.4093 7.79233i 0.619867 0.464027i
$$283$$ 2.59168 + 1.41517i 0.154060 + 0.0841229i 0.554429 0.832231i $$-0.312937\pi$$
−0.400370 + 0.916354i $$0.631118\pi$$
$$284$$ 2.62562 4.08555i 0.155802 0.242433i
$$285$$ −16.4537 + 7.69543i −0.974632 + 0.455838i
$$286$$ 0.168334 0.573294i 0.00995381 0.0338996i
$$287$$ −7.69557 0.550398i −0.454255 0.0324890i
$$288$$ 0.997452 + 0.0713392i 0.0587754 + 0.00420370i
$$289$$ −5.68573 + 19.3638i −0.334455 + 1.13905i
$$290$$ 11.5243 5.38996i 0.676732 0.316510i
$$291$$ 1.51942 2.36427i 0.0890703 0.138596i
$$292$$ 6.23129 + 3.40254i 0.364659 + 0.199119i
$$293$$ 15.4798 11.5881i 0.904341 0.676981i −0.0423574 0.999103i $$-0.513487\pi$$
0.946698 + 0.322121i $$0.104396\pi$$
$$294$$ −0.558439 + 0.255030i −0.0325688 + 0.0148737i
$$295$$ 4.57707 + 20.1576i 0.266487 + 1.17362i
$$296$$ −1.88165 2.92790i −0.109369 0.170181i
$$297$$ −0.100207 1.40108i −0.00581460 0.0812988i
$$298$$ 11.2493 + 11.2493i 0.651656 + 0.651656i
$$299$$ 1.77884 + 0.998649i 0.102873 + 0.0577534i
$$300$$ 4.05645 + 2.92322i 0.234199 + 0.168772i
$$301$$ 4.33728 5.00549i 0.249997 0.288511i
$$302$$ −10.8385 2.35778i −0.623687 0.135675i
$$303$$ 12.6078 + 9.43805i 0.724297 + 0.542202i
$$304$$ −3.37456 7.38925i −0.193544 0.423802i
$$305$$ −1.60037 + 25.6463i −0.0916370 + 1.46850i
$$306$$ 1.71791 + 5.85065i 0.0982061 + 0.334459i
$$307$$ 0.887368 + 4.07917i 0.0506448 + 0.232810i 0.995511 0.0946464i $$-0.0301721\pi$$
−0.944866 + 0.327457i $$0.893808\pi$$
$$308$$ −1.35449 3.63154i −0.0771795 0.206926i
$$309$$ 16.4581 + 4.83253i 0.936268 + 0.274913i
$$310$$ 15.1738 0.137765i 0.861813 0.00782453i
$$311$$ 18.3292 + 21.1530i 1.03935 + 1.19948i 0.979536 + 0.201267i $$0.0645058\pi$$
0.0598156 + 0.998209i $$0.480949\pi$$
$$312$$ 0.203857 + 0.373337i 0.0115412 + 0.0211360i
$$313$$ 10.4637 3.90278i 0.591446 0.220598i −0.0358782 0.999356i $$-0.511423\pi$$
0.627324 + 0.778758i $$0.284150\pi$$
$$314$$ −10.8991 7.00443i −0.615072 0.395283i
$$315$$ 2.51207 5.63552i 0.141539 0.317526i
$$316$$ 4.53860 + 0.652552i 0.255316 + 0.0367089i
$$317$$ 4.67732 12.5404i 0.262704 0.704338i −0.736894 0.676008i $$-0.763708\pi$$
0.999599 0.0283297i $$-0.00901884\pi$$
$$318$$ −1.73544 + 2.31827i −0.0973184 + 0.130002i
$$319$$ 6.72333 4.32082i 0.376434 0.241920i
$$320$$ −1.32372 + 1.80216i −0.0739981 + 0.100744i
$$321$$ 1.20090i 0.0670279i
$$322$$ 13.1198 1.72916i 0.731140 0.0963624i
$$323$$ 35.0253 35.0253i 1.94886 1.94886i
$$324$$ 0.755750 + 0.654861i 0.0419861 + 0.0363812i
$$325$$ −0.113184 + 2.12383i −0.00627831 + 0.117809i
$$326$$ −1.81400 12.6167i −0.100468 0.698772i
$$327$$ −7.50164 2.79797i −0.414842 0.154728i
$$328$$ 1.67561 + 2.23835i 0.0925200 + 0.123592i
$$329$$ 34.4259 10.1084i 1.89796 0.557292i
$$330$$ 2.77026 + 1.48019i 0.152498 + 0.0814817i
$$331$$ −6.38596 + 13.9833i −0.351004 + 0.768591i 0.648966 + 0.760818i $$0.275202\pi$$
−0.999970 + 0.00777386i $$0.997525\pi$$
$$332$$ −3.42614 + 1.87082i −0.188034 + 0.102674i
$$333$$ 0.248289 3.47154i 0.0136062 0.190239i
$$334$$ −3.71020 + 3.21491i −0.203013 + 0.175912i
$$335$$ −10.5937 16.1597i −0.578796 0.882896i
$$336$$ 2.50998 + 1.14627i 0.136930 + 0.0625341i
$$337$$ 13.0993 2.84957i 0.713563 0.155226i 0.158892 0.987296i $$-0.449208\pi$$
0.554671 + 0.832070i $$0.312844\pi$$
$$338$$ 6.14352 11.2510i 0.334164 0.611975i
$$339$$ 1.42623 9.91965i 0.0774622 0.538761i
$$340$$ −13.1168 3.72242i −0.711357 0.201877i
$$341$$ 9.43526 1.35659i 0.510948 0.0734633i
$$342$$ 1.72674 7.93769i 0.0933714 0.429221i
$$343$$ 17.5764 1.25709i 0.949038 0.0678765i
$$344$$ −2.40029 −0.129415
$$345$$ −7.04428 + 8.08567i −0.379251 + 0.435318i
$$346$$ 20.3519 1.09413
$$347$$ −16.8424 + 1.20459i −0.904147 + 0.0646659i −0.515665 0.856790i $$-0.672455\pi$$
−0.388482 + 0.921456i $$0.627001\pi$$
$$348$$ −1.20943 + 5.55965i −0.0648321 + 0.298028i
$$349$$ −12.2393 + 1.75974i −0.655154 + 0.0941970i −0.461872 0.886946i $$-0.652822\pi$$
−0.193282 + 0.981143i $$0.561913\pi$$
$$350$$ 7.66855 + 11.4691i 0.409901 + 0.613052i
$$351$$ −0.0605362 + 0.421039i −0.00323119 + 0.0224734i
$$352$$ −0.673180 + 1.23284i −0.0358806 + 0.0657105i
$$353$$ −1.79599 + 0.390694i −0.0955911 + 0.0207946i −0.260106 0.965580i $$-0.583758\pi$$
0.164515 + 0.986375i $$0.447394\pi$$
$$354$$ −8.40884 3.84019i −0.446925 0.204104i
$$355$$ −2.21191 + 10.6318i −0.117396 + 0.564278i
$$356$$ −0.0365022 + 0.0316293i −0.00193461 + 0.00167635i
$$357$$ −1.20031 + 16.7826i −0.0635273 + 0.888228i
$$358$$ 19.3797 10.5821i 1.02425 0.559281i
$$359$$ −12.4367 + 27.2326i −0.656386 + 1.43728i 0.229467 + 0.973317i $$0.426302\pi$$
−0.885852 + 0.463968i $$0.846425\pi$$
$$360$$ −2.13968 + 0.649426i −0.112771 + 0.0342277i
$$361$$ −45.0853 + 13.2382i −2.37291 + 0.696749i
$$362$$ 5.54344 + 7.40516i 0.291357 + 0.389207i
$$363$$ −8.45779 3.15459i −0.443919 0.165573i
$$364$$ 0.167040 + 1.16179i 0.00875525 + 0.0608941i
$$365$$ −15.7338 2.11656i −0.823543 0.110786i
$$366$$ −8.68482 7.52544i −0.453963 0.393361i
$$367$$ 6.98787 6.98787i 0.364764 0.364764i −0.500799 0.865563i $$-0.666961\pi$$
0.865563 + 0.500799i $$0.166961\pi$$
$$368$$ −3.58727 3.18300i −0.186999 0.165925i
$$369$$ 2.79605i 0.145556i
$$370$$ 6.27223 + 4.60708i 0.326078 + 0.239510i
$$371$$ −6.72220 + 4.32010i −0.348999 + 0.224288i
$$372$$ −4.06682 + 5.43264i −0.210855 + 0.281669i
$$373$$ −4.23068 + 11.3429i −0.219056 + 0.587313i −0.999270 0.0382002i $$-0.987838\pi$$
0.780214 + 0.625513i $$0.215110\pi$$
$$374$$ −8.47792 1.21894i −0.438383 0.0630299i
$$375$$ −10.8093 2.85655i −0.558188 0.147512i
$$376$$ −10.9387 7.02988i −0.564121 0.362539i
$$377$$ −2.26761 + 0.845776i −0.116788 + 0.0435597i
$$378$$ 1.32241 + 2.42181i 0.0680173 + 0.124564i
$$379$$ 0.0468847 + 0.0541079i 0.00240831 + 0.00277933i 0.756952 0.653470i $$-0.226687\pi$$
−0.754544 + 0.656249i $$0.772142\pi$$
$$380$$ 12.9602 + 12.7270i 0.664844 + 0.652881i
$$381$$ 18.8831 + 5.54457i 0.967409 + 0.284057i
$$382$$ 3.14036 + 8.41964i 0.160675 + 0.430786i
$$383$$ −6.99109 32.1375i −0.357228 1.64215i −0.708380 0.705832i $$-0.750573\pi$$
0.351152 0.936319i $$-0.385790\pi$$
$$384$$ −0.281733 0.959493i −0.0143771 0.0489639i
$$385$$ 5.73479 + 6.49814i 0.292272 + 0.331176i
$$386$$ −6.18700 13.5476i −0.314910 0.689557i
$$387$$ −1.92153 1.43844i −0.0976770 0.0731201i
$$388$$ −2.74619 0.597397i −0.139417 0.0303282i
$$389$$ 21.2818 24.5605i 1.07903 1.24527i 0.111164 0.993802i $$-0.464542\pi$$
0.967866 0.251465i $$-0.0809124\pi$$
$$390$$ −0.724459 0.616321i −0.0366844 0.0312086i
$$391$$ 10.5409 27.2774i 0.533077 1.37948i
$$392$$ 0.434105 + 0.434105i 0.0219256 + 0.0219256i
$$393$$ −0.548649 7.67111i −0.0276757 0.386956i
$$394$$ 6.19134 + 9.63392i 0.311915 + 0.485350i
$$395$$ −9.99847 + 2.27029i −0.503077 + 0.114231i
$$396$$ −1.27772 + 0.583516i −0.0642079 + 0.0293228i
$$397$$ −20.2616 + 15.1677i −1.01690 + 0.761244i −0.971334 0.237717i $$-0.923601\pi$$
−0.0455684 + 0.998961i $$0.514510\pi$$
$$398$$ 12.8189 + 6.99967i 0.642555 + 0.350862i
$$399$$ 12.1185 18.8567i 0.606682 0.944015i
$$400$$ 1.32132 4.82225i 0.0660662 0.241113i
$$401$$ 2.09126 7.12219i 0.104433 0.355665i −0.890653 0.454684i $$-0.849752\pi$$
0.995086 + 0.0990188i $$0.0315704\pi$$
$$402$$ 8.61929 + 0.616464i 0.429891 + 0.0307464i
$$403$$ −2.87928 0.205930i −0.143427 0.0102581i
$$404$$ 4.43702 15.1111i 0.220750 0.751805i
$$405$$ −2.10209 0.762373i −0.104454 0.0378826i
$$406$$ −8.48790 + 13.2074i −0.421247 + 0.655474i
$$407$$ 4.29077 + 2.34294i 0.212686 + 0.116135i
$$408$$ 4.88142 3.65418i 0.241666 0.180909i
$$409$$ −3.86292 + 1.76414i −0.191009 + 0.0872309i −0.508624 0.860989i $$-0.669845\pi$$
0.317614 + 0.948220i $$0.397118\pi$$
$$410$$ −5.29012 3.33228i −0.261260 0.164570i
$$411$$ −2.66203 4.14220i −0.131308 0.204320i
$$412$$ −1.22367 17.1092i −0.0602861 0.842910i
$$413$$ −18.0368 18.0368i −0.887533 0.887533i
$$414$$ −0.964260 4.69789i −0.0473908 0.230889i
$$415$$ 5.65603 6.64842i 0.277643 0.326358i
$$416$$ 0.278557 0.321472i 0.0136574 0.0157615i
$$417$$ 20.8519 + 4.53606i 1.02112 + 0.222132i
$$418$$ 9.13458 + 6.83806i 0.446787 + 0.334460i
$$419$$ −4.65611 10.1954i −0.227466 0.498080i 0.761144 0.648583i $$-0.224638\pi$$
−0.988610 + 0.150503i $$0.951911\pi$$
$$420$$ −6.15808 0.384275i −0.300483 0.0187507i
$$421$$ −3.47897 11.8483i −0.169555 0.577450i −0.999799 0.0200507i $$-0.993617\pi$$
0.830244 0.557400i $$-0.188201\pi$$
$$422$$ 0.354815 + 1.63106i 0.0172721 + 0.0793986i
$$423$$ −4.54404 12.1830i −0.220939 0.592360i
$$424$$ 2.77858 + 0.815864i 0.134940 + 0.0396218i
$$425$$ 30.3660 2.72681i 1.47297 0.132269i
$$426$$ −3.18033 3.67030i −0.154088 0.177827i
$$427$$ −15.1967 27.8306i −0.735418 1.34682i
$$428$$ −1.12519 + 0.419673i −0.0543880 + 0.0202857i
$$429$$ −0.502646 0.323031i −0.0242680 0.0155961i
$$430$$ 5.01158 1.92123i 0.241680 0.0926499i
$$431$$ −1.08505 0.156007i −0.0522651 0.00751459i 0.116133 0.993234i $$-0.462950\pi$$
−0.168398 + 0.985719i $$0.553859\pi$$
$$432$$ 0.349464 0.936950i 0.0168136 0.0450790i
$$433$$ −11.4843 + 15.3412i −0.551898 + 0.737250i −0.986570 0.163339i $$-0.947773\pi$$
0.434672 + 0.900589i $$0.356864\pi$$
$$434$$ −15.7528 + 10.1237i −0.756159 + 0.485954i
$$435$$ −1.92485 12.5760i −0.0922897 0.602975i
$$436$$ 8.00645i 0.383439i
$$437$$ −29.7405 + 25.1642i −1.42268 + 1.20377i
$$438$$ 5.02027 5.02027i 0.239878 0.239878i
$$439$$ 9.52773 + 8.25583i 0.454734 + 0.394029i 0.851889 0.523722i $$-0.175457\pi$$
−0.397155 + 0.917751i $$0.630003\pi$$
$$440$$ 0.418754 3.11287i 0.0199633 0.148400i
$$441$$ 0.0873695 + 0.607668i 0.00416045 + 0.0289366i
$$442$$ 2.43021 + 0.906421i 0.115593 + 0.0431141i
$$443$$ 5.03645 + 6.72791i 0.239289 + 0.319653i 0.904069 0.427386i $$-0.140566\pi$$
−0.664780 + 0.747039i $$0.731475\pi$$
$$444$$ −3.33942 + 0.980543i −0.158482 + 0.0465345i
$$445$$ 0.0508964 0.0952558i 0.00241272 0.00451556i
$$446$$ 0.457011 1.00071i 0.0216401 0.0473852i
$$447$$ 13.9629 7.62434i 0.660425 0.360619i
$$448$$ 0.196849 2.75230i 0.00930022 0.130034i
$$449$$ −26.3276 + 22.8130i −1.24248 + 1.07661i −0.248319 + 0.968678i $$0.579878\pi$$
−0.994158 + 0.107934i $$0.965576\pi$$
$$450$$ 3.94764 3.06857i 0.186094 0.144654i
$$451$$ −3.57257 1.63154i −0.168226 0.0768261i
$$452$$ −9.79263 + 2.13026i −0.460607 + 0.100199i
$$453$$ −5.31583 + 9.73522i −0.249760 + 0.457401i
$$454$$ −0.908698 + 6.32013i −0.0426473 + 0.296618i
$$455$$ −1.27867 2.29200i −0.0599451 0.107450i
$$456$$ −8.04065 + 1.15607i −0.376538 + 0.0541380i
$$457$$ −3.74870 + 17.2325i −0.175357 + 0.806102i 0.802471 + 0.596691i $$0.203518\pi$$
−0.977828 + 0.209411i $$0.932845\pi$$
$$458$$ 18.9523 1.35550i 0.885585 0.0633383i
$$459$$ 6.09765 0.284614
$$460$$ 10.0376 + 3.77449i 0.468005 + 0.175986i
$$461$$ 6.58334 0.306617 0.153308 0.988178i $$-0.451007\pi$$
0.153308 + 0.988178i $$0.451007\pi$$
$$462$$ −3.86604 + 0.276505i −0.179864 + 0.0128642i
$$463$$ −4.87369 + 22.4040i −0.226499 + 1.04120i 0.713667 + 0.700485i $$0.247033\pi$$
−0.940166 + 0.340716i $$0.889331\pi$$
$$464$$ 5.63176 0.809725i 0.261448 0.0375905i
$$465$$ 4.14276 14.5980i 0.192116 0.676964i
$$466$$ −0.965342 + 6.71410i −0.0447186 + 0.311025i
$$467$$ −0.970033 + 1.77648i −0.0448878 + 0.0822058i −0.899160 0.437620i $$-0.855821\pi$$
0.854272 + 0.519826i $$0.174003\pi$$
$$468$$ 0.415647 0.0904186i 0.0192133 0.00417960i
$$469$$ 21.6895 + 9.90526i 1.00153 + 0.457382i
$$470$$ 28.4658 + 5.92221i 1.31303 + 0.273171i
$$471$$ −9.79133 + 8.48424i −0.451161 + 0.390933i
$$472$$ −0.659476 + 9.22067i −0.0303548 + 0.424416i
$$473$$ 2.95917 1.61583i 0.136063 0.0742960i
$$474$$ 1.90479 4.17091i 0.0874899 0.191576i
$$475$$ −37.2465 16.1992i −1.70899 0.743269i
$$476$$ 16.1439 4.74027i 0.739954 0.217270i
$$477$$ 1.73544 + 2.31827i 0.0794602 + 0.106146i
$$478$$ −27.4352 10.2328i −1.25486 0.468038i
$$479$$ 0.648613 + 4.51120i 0.0296359 + 0.206122i 0.999259 0.0384803i $$-0.0122517\pi$$
−0.969623 + 0.244602i $$0.921343\pi$$
$$480$$ 1.35622 + 1.77783i 0.0619028 + 0.0811462i
$$481$$ −1.11885 0.969491i −0.0510153 0.0442050i
$$482$$ 0.663486 0.663486i 0.0302209 0.0302209i
$$483$$ 2.03717 13.0756i 0.0926943 0.594958i
$$484$$ 9.02694i 0.410315i
$$485$$ 6.21194 0.950782i 0.282070 0.0431728i
$$486$$ 0.841254 0.540641i 0.0381600 0.0245240i
$$487$$ 14.7176 19.6605i 0.666920 0.890901i −0.331702 0.943384i $$-0.607623\pi$$
0.998622 + 0.0524833i $$0.0167136\pi$$
$$488$$ −4.01593 + 10.7671i −0.181792 + 0.487404i
$$489$$ −12.6167 1.81400i −0.570545 0.0820320i
$$490$$ −1.25383 0.558905i −0.0566424 0.0252488i
$$491$$ 8.64445 + 5.55545i 0.390118 + 0.250714i 0.720966 0.692970i $$-0.243698\pi$$
−0.330848 + 0.943684i $$0.607335\pi$$
$$492$$ 2.61976 0.977119i 0.118108 0.0440519i
$$493$$ 16.6269 + 30.4499i 0.748837 + 1.37139i
$$494$$ −2.26281 2.61143i −0.101809 0.117494i
$$495$$ 2.20070 2.24103i 0.0989142 0.100727i
$$496$$ 6.51131 + 1.91189i 0.292367 + 0.0858466i
$$497$$ −4.68307 12.5558i −0.210064 0.563204i
$$498$$ 0.829779 + 3.81443i 0.0371833 + 0.170929i
$$499$$ 10.4187 + 35.4829i 0.466406 + 1.58843i 0.771577 + 0.636136i $$0.219468\pi$$
−0.305171 + 0.952298i $$0.598713\pi$$
$$500$$ 1.10100 + 11.1260i 0.0492383 + 0.497570i
$$501$$ 2.03940 + 4.46565i 0.0911135 + 0.199511i
$$502$$ −17.7067 13.2551i −0.790290 0.591604i
$$503$$ −18.4263 4.00839i −0.821587 0.178725i −0.217925 0.975965i $$-0.569929\pi$$
−0.603662 + 0.797240i $$0.706292\pi$$
$$504$$ 1.80698 2.08536i 0.0804892 0.0928895i
$$505$$ 2.83107 + 35.1019i 0.125981 + 1.56202i
$$506$$ 6.56526 + 1.50924i 0.291861 + 0.0670939i
$$507$$ −9.06445 9.06445i −0.402566 0.402566i
$$508$$ −1.40397 19.6301i −0.0622913 0.870946i
$$509$$ 18.3847 + 28.6071i 0.814887 + 1.26799i 0.960398 + 0.278632i $$0.0898810\pi$$
−0.145511 + 0.989357i $$0.546483\pi$$
$$510$$ −7.26706 + 11.5367i −0.321791 + 0.510855i
$$511$$ 17.8202 8.13820i 0.788318 0.360013i
$$512$$ −0.800541 + 0.599278i −0.0353793 + 0.0264846i
$$513$$ −7.12968 3.89310i −0.314783 0.171885i
$$514$$ −0.379127 + 0.589933i −0.0167226 + 0.0260208i
$$515$$ 16.2494 + 34.7429i 0.716033 + 1.53096i
$$516$$ −0.676241 + 2.30306i −0.0297698 + 0.101387i
$$517$$ 18.2180 + 1.30298i 0.801229 + 0.0573050i
$$518$$ −9.57912 0.685112i −0.420882 0.0301021i
$$519$$ 5.73380 19.5275i 0.251686 0.857164i
$$520$$ −0.324289 + 0.894163i −0.0142210 + 0.0392117i
$$521$$ 2.70606 4.21071i 0.118555 0.184474i −0.776904 0.629619i $$-0.783211\pi$$
0.895459 + 0.445144i $$0.146848\pi$$
$$522$$ 4.99371 + 2.72677i 0.218569 + 0.119347i
$$523$$ −31.9286 + 23.9014i −1.39614 + 1.04514i −0.404717 + 0.914442i $$0.632630\pi$$
−0.991423 + 0.130695i $$0.958279\pi$$
$$524$$ −6.99571 + 3.19484i −0.305609 + 0.139567i
$$525$$ 13.1650 4.12668i 0.574570 0.180103i
$$526$$ −1.14336 1.77911i −0.0498529 0.0775727i
$$527$$ 2.95201 + 41.2744i 0.128591 + 1.79794i
$$528$$ 0.993243 + 0.993243i 0.0432253 + 0.0432253i
$$529$$ −10.0438 + 20.6911i −0.436688 + 0.899613i
$$530$$ −6.45442 + 0.520568i −0.280362 + 0.0226120i
$$531$$ −6.05368 + 6.98632i −0.262707 + 0.303180i
$$532$$ −21.9027 4.76465i −0.949604 0.206574i
$$533$$ 0.952124 + 0.712751i 0.0412411 + 0.0308727i
$$534$$ 0.0200643 + 0.0439346i 0.000868265 + 0.00190124i
$$535$$ 2.01337 1.77685i 0.0870455 0.0768200i
$$536$$ −2.43454 8.29128i −0.105156 0.358129i
$$537$$ −4.69357 21.5760i −0.202542 0.931072i
$$538$$ 2.17626 + 5.83477i 0.0938251 + 0.251555i
$$539$$ −0.827412 0.242950i −0.0356392 0.0104646i
$$540$$ 0.0203007 + 2.23598i 0.000873605 + 0.0962211i
$$541$$ 7.96628 + 9.19358i 0.342497 + 0.395263i 0.900700 0.434442i $$-0.143054\pi$$
−0.558203 + 0.829705i $$0.688509\pi$$
$$542$$ −15.5780 28.5289i −0.669131 1.22542i
$$543$$ 8.66697 3.23261i 0.371935 0.138725i
$$544$$ −5.12967 3.29664i −0.219933 0.141342i
$$545$$ −6.40848 16.7167i −0.274509 0.716064i
$$546$$ 1.16179 + 0.167040i 0.0497199 + 0.00714864i
$$547$$ 0.627785 1.68316i 0.0268421 0.0719665i −0.922837 0.385190i $$-0.874136\pi$$
0.949680 + 0.313223i $$0.101409\pi$$
$$548$$ −2.95075 + 3.94174i −0.126050 + 0.168383i
$$549$$ −9.66741 + 6.21286i −0.412595 + 0.265159i
$$550$$ 1.61727 + 6.83454i 0.0689605 + 0.291426i
$$551$$ 46.2191i 1.96900i
$$552$$ −4.06472 + 2.54521i −0.173006 + 0.108331i
$$553$$ 8.94652 8.94652i 0.380445 0.380445i
$$554$$ 6.32376 + 5.47957i 0.268671 + 0.232805i
$$555$$ 6.18755 4.72020i 0.262647 0.200361i
$$556$$ −3.03694 21.1224i −0.128795 0.895789i
$$557$$ −35.9555 13.4107i −1.52348 0.568229i −0.558261 0.829665i $$-0.688531\pi$$
−0.965221 + 0.261436i $$0.915804\pi$$
$$558$$ 4.06682 + 5.43264i 0.172162 + 0.229982i
$$559$$ −0.979651 + 0.287651i −0.0414348 + 0.0121664i
$$560$$ 1.79198 + 5.90410i 0.0757250 + 0.249494i
$$561$$ −3.55807 + 7.79109i −0.150222 + 0.328940i
$$562$$ −16.4496 + 8.98218i −0.693886 + 0.378890i
$$563$$ −0.388006 + 5.42504i −0.0163525 + 0.228638i 0.982703 + 0.185188i $$0.0592894\pi$$
−0.999056 + 0.0434499i $$0.986165\pi$$
$$564$$ −9.82692 + 8.51507i −0.413788 + 0.358549i
$$565$$ 18.7410 12.2859i 0.788438 0.516873i
$$566$$ −2.68604 1.22667i −0.112903 0.0515609i
$$567$$ 2.69627 0.586538i 0.113233 0.0246323i
$$568$$ −2.32747 + 4.26245i −0.0976587 + 0.178849i
$$569$$ −0.175779 + 1.22257i −0.00736904 + 0.0512528i −0.993174 0.116641i $$-0.962787\pi$$
0.985805 + 0.167894i $$0.0536965\pi$$
$$570$$ 15.8628 8.84962i 0.664418 0.370670i
$$571$$ 18.9867 2.72988i 0.794570 0.114242i 0.266937 0.963714i $$-0.413989\pi$$
0.527633 + 0.849472i $$0.323079\pi$$
$$572$$ −0.127007 + 0.583842i −0.00531043 + 0.0244117i
$$573$$ 8.96333 0.641070i 0.374448 0.0267811i
$$574$$ 7.71523 0.322027
$$575$$ −23.9787 + 0.153473i −0.999980 + 0.00640025i
$$576$$ −1.00000 −0.0416667
$$577$$ 21.3344 1.52587i 0.888162 0.0635226i 0.380202 0.924903i $$-0.375854\pi$$
0.507960 + 0.861381i $$0.330400\pi$$
$$578$$ 4.28984 19.7201i 0.178434 0.820247i
$$579$$ −14.7419 + 2.11957i −0.612654 + 0.0880864i
$$580$$ −11.1105 + 6.19837i −0.461336 + 0.257373i
$$581$$ −1.53294 + 10.6618i −0.0635969 + 0.442326i
$$582$$ −1.34689 + 2.46664i −0.0558303 + 0.102246i
$$583$$ −3.97476 + 0.864656i −0.164618 + 0.0358104i
$$584$$ −6.45815 2.94934i −0.267240 0.122044i
$$585$$ −0.795459 + 0.521475i −0.0328882 + 0.0215603i
$$586$$ −14.6137 + 12.6628i −0.603686 + 0.523097i
$$587$$ 0.414204 5.79133i 0.0170960 0.239034i −0.981718 0.190342i $$-0.939040\pi$$
0.998814 0.0486918i $$-0.0155052\pi$$
$$588$$ 0.538822 0.294219i 0.0222207 0.0121334i
$$589$$ 22.9004 50.1449i 0.943596 2.06619i
$$590$$ −6.00344 19.7797i −0.247158 0.814318i
$$591$$ 10.9880 3.22636i 0.451985 0.132715i
$$592$$ 2.08573 + 2.78621i 0.0857229 + 0.114512i
$$593$$ −15.5862 5.81334i −0.640047 0.238725i 0.00842413 0.999965i $$-0.497318\pi$$
−0.648471 + 0.761239i $$0.724591\pi$$
$$594$$ 0.199904 + 1.39036i 0.00820214 + 0.0570471i
$$595$$ −29.9127 + 22.8190i −1.22630 + 0.935489i
$$596$$ −12.0232 10.4181i −0.492488 0.426744i
$$597$$ 10.3276 10.3276i 0.422682 0.422682i
$$598$$ −1.84555 0.869203i −0.0754703 0.0355444i
$$599$$ 14.2196i 0.580996i 0.956876 + 0.290498i $$0.0938210\pi$$
−0.956876 + 0.290498i $$0.906179\pi$$
$$600$$ −4.25466 2.62639i −0.173696 0.107222i
$$601$$ −14.9018 + 9.57678i −0.607856 + 0.390645i −0.808052 0.589111i $$-0.799478\pi$$
0.200197 + 0.979756i $$0.435842\pi$$
$$602$$ −3.96914 + 5.30215i −0.161770 + 0.216100i
$$603$$ 3.01983 8.09647i 0.122977 0.329714i
$$604$$ 10.9791 + 1.57856i 0.446733 + 0.0642306i
$$605$$ −7.22529 18.8474i −0.293750 0.766254i
$$606$$ −13.2489 8.51457i −0.538201 0.345881i
$$607$$ 2.24214 0.836274i 0.0910055 0.0339433i −0.303549 0.952816i $$-0.598172\pi$$
0.394555 + 0.918873i $$0.370899\pi$$
$$608$$ 3.89310 + 7.12968i 0.157886 + 0.289147i
$$609$$ 10.2811 + 11.8650i 0.416612 + 0.480796i
$$610$$ −0.233289 25.6951i −0.00944561 1.04036i
$$611$$ −5.30697 1.55827i −0.214697 0.0630407i
$$612$$ −2.13091 5.71319i −0.0861369 0.230942i
$$613$$ −0.373970 1.71911i −0.0151045 0.0694343i 0.968978 0.247148i $$-0.0794935\pi$$
−0.984082 + 0.177714i $$0.943130\pi$$
$$614$$ −1.17611 4.00547i −0.0474640 0.161648i
$$615$$ −4.68770 + 4.13702i −0.189026 + 0.166821i
$$616$$ 1.61011 + 3.52566i 0.0648733 + 0.142053i
$$617$$ 3.96048 + 2.96478i 0.159443 + 0.119357i 0.676020 0.736883i $$-0.263703\pi$$
−0.516577 + 0.856241i $$0.672794\pi$$
$$618$$ −16.7609 3.64611i −0.674223 0.146668i
$$619$$ −3.47128 + 4.00607i −0.139523 + 0.161018i −0.821210 0.570626i $$-0.806701\pi$$
0.681688 + 0.731643i $$0.261246\pi$$
$$620$$ −15.1253 + 1.21990i −0.607447 + 0.0489923i
$$621$$ −4.77926 0.398349i −0.191785 0.0159852i
$$622$$ −19.7915 19.7915i −0.793567 0.793567i
$$623$$ 0.00950765 + 0.132934i 0.000380916 + 0.00532590i
$$624$$ −0.229972 0.357843i −0.00920623 0.0143252i
$$625$$ −11.2042 22.3487i −0.448168 0.893950i
$$626$$ −10.1587 + 4.63931i −0.406022 + 0.185424i
$$627$$ 9.13458 6.83806i 0.364800 0.273086i
$$628$$ 11.3710 + 6.20905i 0.453753 + 0.247768i
$$629$$ −11.4736 + 17.8533i −0.457483 + 0.711858i
$$630$$ −2.10364 + 5.80037i −0.0838110 + 0.231092i
$$631$$ −3.88451 + 13.2294i −0.154640 + 0.526655i −0.999971 0.00758712i $$-0.997585\pi$$
0.845331 + 0.534243i $$0.179403\pi$$
$$632$$ −4.57359 0.327109i −0.181928 0.0130117i
$$633$$ 1.66495 + 0.119080i 0.0661759 + 0.00473299i
$$634$$ −3.77078 + 12.8421i −0.149757 + 0.510025i
$$635$$ 18.6436 + 39.8620i 0.739848 + 1.58188i
$$636$$ 1.56563 2.43617i 0.0620813 0.0966004i
$$637$$ 0.229198 + 0.125152i 0.00908115 + 0.00495868i
$$638$$ −6.39796 + 4.78945i −0.253298 + 0.189616i
$$639$$ −4.41763 + 2.01746i −0.174759 + 0.0798097i
$$640$$ 1.19178 1.89200i 0.0471093 0.0747878i
$$641$$ −15.2158 23.6763i −0.600988 0.935156i −0.999835 0.0181386i $$-0.994226\pi$$
0.398847 0.917017i $$-0.369410\pi$$
$$642$$ 0.0856715 + 1.19784i 0.00338118 + 0.0472751i
$$643$$ −23.3062 23.3062i −0.919106 0.919106i 0.0778584 0.996964i $$-0.475192\pi$$
−0.996964 + 0.0778584i $$0.975192\pi$$
$$644$$ −12.9631 + 2.66071i −0.510816 + 0.104847i
$$645$$ −0.431481 5.34985i −0.0169895 0.210650i
$$646$$ −32.4374 + 37.4347i −1.27623 + 1.47285i
$$647$$ −34.8749 7.58657i −1.37107 0.298259i −0.534063 0.845445i $$-0.679336\pi$$
−0.837011 + 0.547186i $$0.815699\pi$$
$$648$$ −0.800541 0.599278i −0.0314482 0.0235419i
$$649$$ −5.39415 11.8115i −0.211739 0.463644i
$$650$$ −0.0386166 2.12649i −0.00151467 0.0834079i
$$651$$ 5.27555 + 17.9669i 0.206765 + 0.704178i
$$652$$ 2.70944 + 12.4551i 0.106110 + 0.487779i
$$653$$ 13.9683 + 37.4503i 0.546620 + 1.46555i 0.857193 + 0.514996i $$0.172206\pi$$
−0.310573 + 0.950550i $$0.600521\pi$$
$$654$$ 7.68213 + 2.25568i 0.300395 + 0.0882040i
$$655$$ 12.0492 12.2700i 0.470800 0.479428i
$$656$$ −1.83102 2.11311i −0.0714894 0.0825032i
$$657$$ −3.40254 6.23129i −0.132746 0.243106i
$$658$$ −33.6171 + 12.5385i −1.31053 + 0.488802i
$$659$$ 18.8922 + 12.1413i 0.735936 + 0.472957i 0.854147 0.520031i $$-0.174080\pi$$
−0.118212 + 0.992988i $$0.537716\pi$$
$$660$$ −2.86880 1.27879i −0.111668 0.0497768i
$$661$$ −27.4770 3.95059i −1.06873 0.153660i −0.414571 0.910017i $$-0.636068\pi$$
−0.654160 + 0.756357i $$0.726978\pi$$
$$662$$ 5.37213 14.4032i 0.208794 0.559798i
$$663$$ 1.55437 2.07640i 0.0603669 0.0806407i
$$664$$ 3.28395 2.11047i 0.127442 0.0819020i
$$665$$ 49.5445 7.58314i 1.92125 0.294062i
$$666$$ 3.48040i 0.134863i
$$667$$ −11.0427 24.9524i −0.427575 0.966162i
$$668$$ 3.47140 3.47140i 0.134312 0.134312i
$$669$$ −0.831423 0.720432i −0.0321447 0.0278535i
$$670$$ 11.7195 + 15.3627i 0.452765 + 0.593514i
$$671$$ −2.29723 15.9776i −0.0886834 0.616807i
$$672$$ −2.58536 0.964288i −0.0997323 0.0371982i
$$673$$ −24.9334 33.3072i −0.961114 1.28390i −0.958854 0.283900i $$-0.908372\pi$$
−0.00225987 0.999997i $$-0.500719\pi$$
$$674$$ −12.8626 + 3.77680i −0.495449 + 0.145477i
$$675$$ −1.83209 4.65225i −0.0705173 0.179065i
$$676$$ −5.32523 + 11.6606i −0.204817 + 0.448486i
$$677$$ 10.6320 5.80549i 0.408620 0.223123i −0.261773 0.965129i $$-0.584307\pi$$
0.670393 + 0.742006i $$0.266125\pi$$
$$678$$ −0.714937 + 9.99612i −0.0274570 + 0.383899i
$$679$$ −5.86074 + 5.07836i −0.224914 + 0.194890i
$$680$$ 13.3489 + 2.77720i 0.511908 + 0.106501i
$$681$$ 5.80811 + 2.65248i 0.222567 + 0.101643i
$$682$$ −9.31445 + 2.02623i −0.356669 + 0.0775885i
$$683$$ −22.1053 + 40.4828i −0.845834 + 1.54903i −0.0100652 + 0.999949i $$0.503204\pi$$
−0.835769 + 0.549081i $$0.814978\pi$$
$$684$$ −1.15607 + 8.04065i −0.0442035 + 0.307442i
$$685$$ 3.00586 10.5918i 0.114848 0.404692i
$$686$$ −17.4420 + 2.50778i −0.665937 + 0.0957473i
$$687$$ 4.03890 18.5665i 0.154094 0.708357i
$$688$$ 2.39418 0.171235i 0.0912771 0.00652827i
$$689$$ 1.23182 0.0469284
$$690$$ 6.44951 8.56760i 0.245529 0.326163i
$$691$$ −23.4157 −0.890777 −0.445388 0.895337i $$-0.646934\pi$$
−0.445388 + 0.895337i $$0.646934\pi$$
$$692$$ −20.3001 + 1.45189i −0.771693 + 0.0551926i
$$693$$ −0.823885 + 3.78734i −0.0312968 + 0.143869i
$$694$$ 16.7136 2.40305i 0.634438 0.0912184i
$$695$$ 23.2475 + 41.6707i 0.881828 + 1.58066i
$$696$$ 0.809725 5.63176i 0.0306925 0.213471i
$$697$$ 8.17087 14.9638i 0.309494 0.566795i
$$698$$ 12.0826 2.62840i 0.457332 0.0994865i
$$699$$ 6.17016 + 2.81782i 0.233377 + 0.106580i
$$700$$ −8.46721 10.8929i −0.320030 0.411711i
$$701$$ −35.3441 + 30.6258i −1.33493 + 1.15672i −0.360314 + 0.932831i $$0.617331\pi$$
−0.974614 + 0.223891i $$0.928124\pi$$
$$702$$ 0.0303454 0.424285i 0.00114531 0.0160136i
$$703$$ 24.8142 13.5496i 0.935884 0.511031i
$$704$$ 0.583516 1.27772i 0.0219921 0.0481559i
$$705$$ 13.7021 25.6442i 0.516049 0.965818i
$$706$$ 1.76355 0.517824i 0.0663719 0.0194885i
$$707$$ −26.0427 34.7890i −0.979437 1.30837i
$$708$$ 8.66138 + 3.23053i 0.325514 + 0.121411i
$$709$$ −0.880387 6.12323i −0.0330636 0.229963i 0.966589 0.256333i $$-0.0825143\pi$$
−0.999652 + 0.0263701i $$0.991605\pi$$
$$710$$ 1.44781 10.7625i 0.0543355 0.403910i
$$711$$ −3.46532 3.00271i −0.129960 0.112611i
$$712$$ 0.0341528 0.0341528i 0.00127993 0.00127993i
$$713$$ 0.382645 32.5432i 0.0143302 1.21875i
$$714$$ 16.8254i 0.629676i
$$715$$ −0.202137 1.32066i −0.00755950 0.0493900i
$$716$$ −18.5754 + 11.9377i −0.694194 + 0.446132i
$$717$$ −17.5477 + 23.4410i −0.655331 + 0.875419i
$$718$$ 10.4623 28.0505i 0.390449 1.04683i
$$719$$ 33.9576 + 4.88236i 1.26640 + 0.182081i 0.742587 0.669750i $$-0.233599\pi$$
0.523816 + 0.851831i $$0.324508\pi$$
$$720$$ 2.08790 0.800414i 0.0778115 0.0298297i
$$721$$ −39.8170 25.5888i −1.48286 0.952979i
$$722$$ 44.0260 16.4208i 1.63848 0.611120i
$$723$$ −0.449684 0.823535i −0.0167239 0.0306276i
$$724$$ −6.05759 6.99083i −0.225129 0.259812i
$$725$$ 18.2363 21.8346i 0.677278 0.810915i
$$726$$ 8.66128 + 2.54318i 0.321450 + 0.0943864i
$$727$$ −15.9016 42.6338i −0.589758 1.58120i −0.797696 0.603060i $$-0.793948\pi$$
0.207938 0.978142i $$-0.433325\pi$$
$$728$$ −0.249495 1.14691i −0.00924690 0.0425073i
$$729$$ −0.281733 0.959493i −0.0104345 0.0355368i
$$730$$ 15.8447 + 0.988735i 0.586438 + 0.0365947i
$$731$$ 6.08007 + 13.3135i 0.224880 + 0.492418i
$$732$$ 9.19955 + 6.88670i 0.340025 + 0.254540i
$$733$$ 37.9294 + 8.25104i 1.40096 + 0.304759i 0.848682 0.528903i $$-0.177397\pi$$
0.552274 + 0.833663i $$0.313760\pi$$
$$734$$ −6.47156 + 7.46858i −0.238870 + 0.275670i
$$735$$ −0.889511 + 1.04558i −0.0328101 + 0.0385669i
$$736$$ 3.80520 + 2.91898i 0.140262 + 0.107595i
$$737$$ 8.58292 + 8.58292i 0.316156 + 0.316156i
$$738$$ −0.199468 2.78892i −0.00734251 0.102662i
$$739$$ −9.94703 15.4779i −0.365907 0.569363i 0.608667 0.793426i $$-0.291704\pi$$
−0.974575 + 0.224062i $$0.928068\pi$$
$$740$$ −6.58492 4.14788i −0.242066 0.152479i
$$741$$ −3.14315 + 1.43543i −0.115467 + 0.0527318i
$$742$$ 6.39688 4.78865i 0.234837 0.175797i
$$743$$ −0.595079 0.324938i −0.0218313 0.0119208i 0.468296 0.883572i $$-0.344868\pi$$
−0.490128 + 0.871651i $$0.663050\pi$$
$$744$$ 3.66890 5.70892i 0.134508 0.209299i
$$745$$ 33.4420 + 12.1285i 1.22522 + 0.444355i
$$746$$ 3.41071 11.6158i 0.124875 0.425285i
$$747$$ 3.89370 + 0.278483i 0.142463 + 0.0101891i
$$748$$ 8.54328 + 0.611027i 0.312373 + 0.0223414i
$$749$$ −0.933575 + 3.17947i −0.0341121 + 0.116175i
$$750$$ 10.9855 + 2.07815i 0.401134 + 0.0758834i
$$751$$ 11.1671 17.3764i 0.407494 0.634072i −0.575481 0.817815i $$-0.695185\pi$$
0.982974 + 0.183743i $$0.0588214\pi$$
$$752$$ 11.4123 + 6.23161i 0.416166 + 0.227244i
$$753$$ −17.7067 + 13.2551i −0.645269 + 0.483042i
$$754$$ 2.20150 1.00539i 0.0801738 0.0366142i
$$755$$ −24.1868 + 5.49196i −0.880248 + 0.199873i
$$756$$ −1.49181 2.32130i −0.0542565 0.0844248i
$$757$$ 2.85418 + 39.9066i 0.103737 + 1.45043i 0.736685 + 0.676237i $$0.236390\pi$$
−0.632948 + 0.774195i $$0.718155\pi$$
$$758$$ −0.0506253 0.0506253i −0.00183879 0.00183879i
$$759$$ 3.29775 5.87412i 0.119701 0.213217i
$$760$$ −13.8351 11.7700i −0.501852 0.426942i
$$761$$ −3.30561 + 3.81487i −0.119828 + 0.138289i −0.812494 0.582970i $$-0.801891\pi$$
0.692666 + 0.721259i $$0.256436\pi$$
$$762$$ −19.2305 4.18334i −0.696648 0.151546i
$$763$$ 17.6859 + 13.2395i 0.640273 + 0.479303i
$$764$$ −3.73301 8.17416i −0.135056 0.295731i
$$765$$ 9.02205 + 10.2230i 0.326193 + 0.369612i
$$766$$ 9.26594 + 31.5569i 0.334792 + 1.14020i
$$767$$ 0.835850 + 3.84234i 0.0301808 + 0.138739i
$$768$$ 0.349464 + 0.936950i 0.0126102 + 0.0338093i
$$769$$ −5.69413 1.67195i −0.205336 0.0602920i 0.177447 0.984130i $$-0.443216\pi$$
−0.382783 + 0.923838i $$0.625034\pi$$
$$770$$ −6.18375 6.07247i −0.222847 0.218837i
$$771$$ 0.459225 + 0.529973i 0.0165386 + 0.0190865i
$$772$$ 7.13771 + 13.0717i 0.256892 + 0.470462i
$$773$$ 5.57645 2.07991i 0.200571