Properties

Label 688.2.g.d.687.1
Level $688$
Weight $2$
Character 688.687
Analytic conductor $5.494$
Analytic rank $0$
Dimension $4$
CM discriminant -43
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [688,2,Mod(687,688)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(688, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("688.687");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 688 = 2^{4} \cdot 43 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 688.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.49370765906\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-43})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} - 11x + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{43}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 687.1
Root \(-2.58945 - 2.07237i\) of defining polynomial
Character \(\chi\) \(=\) 688.687
Dual form 688.2.g.d.687.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{9} +O(q^{10})\) \(q-3.00000 q^{9} -4.14474i q^{11} -7.17891 q^{13} -3.17891 q^{17} +2.78346i q^{23} +5.00000 q^{25} -11.0729i q^{31} -11.1789 q^{41} -6.55744i q^{43} +13.1149i q^{47} -7.00000 q^{49} +0.821092 q^{53} -13.1149i q^{59} +9.71166i q^{67} +13.1149i q^{79} +9.00000 q^{81} -18.0012i q^{83} +17.5367 q^{97} +12.4342i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 12 q^{9} - 6 q^{13} + 10 q^{17} + 20 q^{25} - 22 q^{41} - 28 q^{49} + 26 q^{53} + 36 q^{81} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/688\mathbb{Z}\right)^\times\).

\(n\) \(431\) \(433\) \(517\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 0 0
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) − 4.14474i − 1.24969i −0.780750 0.624844i \(-0.785163\pi\)
0.780750 0.624844i \(-0.214837\pi\)
\(12\) 0 0
\(13\) −7.17891 −1.99107 −0.995535 0.0943882i \(-0.969911\pi\)
−0.995535 + 0.0943882i \(0.969911\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.17891 −0.770999 −0.385499 0.922708i \(-0.625971\pi\)
−0.385499 + 0.922708i \(0.625971\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.78346i 0.580391i 0.956967 + 0.290196i \(0.0937204\pi\)
−0.956967 + 0.290196i \(0.906280\pi\)
\(24\) 0 0
\(25\) 5.00000 1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) − 11.0729i − 1.98876i −0.105869 0.994380i \(-0.533762\pi\)
0.105869 0.994380i \(-0.466238\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −11.1789 −1.74585 −0.872926 0.487852i \(-0.837780\pi\)
−0.872926 + 0.487852i \(0.837780\pi\)
\(42\) 0 0
\(43\) − 6.55744i − 1.00000i
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 13.1149i 1.91300i 0.291730 + 0.956501i \(0.405769\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.821092 0.112786 0.0563928 0.998409i \(-0.482040\pi\)
0.0563928 + 0.998409i \(0.482040\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 13.1149i − 1.70741i −0.520756 0.853706i \(-0.674350\pi\)
0.520756 0.853706i \(-0.325650\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 9.71166i 1.18647i 0.805030 + 0.593234i \(0.202149\pi\)
−0.805030 + 0.593234i \(0.797851\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 13.1149i 1.47554i 0.675053 + 0.737769i \(0.264121\pi\)
−0.675053 + 0.737769i \(0.735879\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) − 18.0012i − 1.97588i −0.154828 0.987942i \(-0.549482\pi\)
0.154828 0.987942i \(-0.450518\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 17.5367 1.78058 0.890292 0.455389i \(-0.150500\pi\)
0.890292 + 0.455389i \(0.150500\pi\)
\(98\) 0 0
\(99\) 12.4342i 1.24969i
\(100\) 0 0
\(101\) −15.1789 −1.51036 −0.755179 0.655519i \(-0.772450\pi\)
−0.755179 + 0.655519i \(0.772450\pi\)
\(102\) 0 0
\(103\) 5.50603i 0.542525i 0.962505 + 0.271263i \(0.0874412\pi\)
−0.962505 + 0.271263i \(0.912559\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 13.1149i − 1.26786i −0.773389 0.633932i \(-0.781440\pi\)
0.773389 0.633932i \(-0.218560\pi\)
\(108\) 0 0
\(109\) 13.5367 1.29658 0.648292 0.761392i \(-0.275484\pi\)
0.648292 + 0.761392i \(0.275484\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 21.5367 1.99107
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −6.17891 −0.561719
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 19.3624i 1.71814i 0.511859 + 0.859069i \(0.328957\pi\)
−0.511859 + 0.859069i \(0.671043\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) − 1.42217i − 0.120627i −0.998179 0.0603135i \(-0.980790\pi\)
0.998179 0.0603135i \(-0.0192101\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 29.7547i 2.48822i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 9.53673 0.770999
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 24.9294i − 1.92909i −0.263916 0.964546i \(-0.585014\pi\)
0.263916 0.964546i \(-0.414986\pi\)
\(168\) 0 0
\(169\) 38.5367 2.96436
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.00000 −0.152057 −0.0760286 0.997106i \(-0.524224\pi\)
−0.0760286 + 0.997106i \(0.524224\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 6.00000 0.445976 0.222988 0.974821i \(-0.428419\pi\)
0.222988 + 0.974821i \(0.428419\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 13.1758i 0.963507i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −19.1789 −1.38053 −0.690264 0.723558i \(-0.742506\pi\)
−0.690264 + 0.723558i \(0.742506\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.0000 −0.712470 −0.356235 0.934396i \(-0.615940\pi\)
−0.356235 + 0.934396i \(0.615940\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 8.35038i − 0.580391i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 22.8211 1.53511
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) −15.0000 −1.00000
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 5.53673 0.365877 0.182939 0.983124i \(-0.441439\pi\)
0.182939 + 0.983124i \(0.441439\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 13.1149i 0.848331i 0.905585 + 0.424165i \(0.139432\pi\)
−0.905585 + 0.424165i \(0.860568\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 23.5681i 1.48760i 0.668400 + 0.743802i \(0.266979\pi\)
−0.668400 + 0.743802i \(0.733021\pi\)
\(252\) 0 0
\(253\) 11.5367 0.725308
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −27.8945 −1.70076 −0.850380 0.526169i \(-0.823628\pi\)
−0.850380 + 0.526169i \(0.823628\pi\)
\(270\) 0 0
\(271\) − 13.7955i − 0.838018i −0.907982 0.419009i \(-0.862378\pi\)
0.907982 0.419009i \(-0.137622\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 20.7237i − 1.24969i
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 33.2188i 1.98876i
\(280\) 0 0
\(281\) −31.8945 −1.90267 −0.951334 0.308160i \(-0.900287\pi\)
−0.951334 + 0.308160i \(0.900287\pi\)
\(282\) 0 0
\(283\) − 31.8576i − 1.89374i −0.321624 0.946868i \(-0.604229\pi\)
0.321624 0.946868i \(-0.395771\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −6.89454 −0.405561
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 22.0000 1.28525 0.642627 0.766179i \(-0.277845\pi\)
0.642627 + 0.766179i \(0.277845\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 19.9822i − 1.15560i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 15.2786i − 0.871995i −0.899948 0.435997i \(-0.856396\pi\)
0.899948 0.435997i \(-0.143604\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 27.6519i − 1.56800i −0.620763 0.783998i \(-0.713177\pi\)
0.620763 0.783998i \(-0.286823\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −23.1789 −1.30186 −0.650929 0.759139i \(-0.725620\pi\)
−0.650929 + 0.759139i \(0.725620\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −35.8945 −1.99107
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.53673 0.0837107 0.0418554 0.999124i \(-0.486673\pi\)
0.0418554 + 0.999124i \(0.486673\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −45.8945 −2.48533
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.8211 0.682398 0.341199 0.939991i \(-0.389167\pi\)
0.341199 + 0.939991i \(0.389167\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.0608864i 0.00321346i 0.999999 + 0.00160673i \(0.000511438\pi\)
−0.999999 + 0.00160673i \(0.999489\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 13.1149i 0.684591i 0.939592 + 0.342296i \(0.111204\pi\)
−0.939592 + 0.342296i \(0.888796\pi\)
\(368\) 0 0
\(369\) 33.5367 1.74585
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 34.5801i − 1.77626i −0.459590 0.888131i \(-0.652004\pi\)
0.459590 0.888131i \(-0.347996\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 19.6723i 1.00000i
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) − 8.84836i − 0.447481i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 30.0000 1.50566 0.752828 0.658217i \(-0.228689\pi\)
0.752828 + 0.658217i \(0.228689\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −39.8945 −1.99224 −0.996119 0.0880147i \(-0.971948\pi\)
−0.996119 + 0.0880147i \(0.971948\pi\)
\(402\) 0 0
\(403\) 79.4917i 3.95976i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) − 39.3446i − 1.91300i
\(424\) 0 0
\(425\) −15.8945 −0.770999
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 38.7858i − 1.86824i −0.356953 0.934122i \(-0.616185\pi\)
0.356953 0.934122i \(-0.383815\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) − 22.2068i − 1.05987i −0.848038 0.529936i \(-0.822216\pi\)
0.848038 0.529936i \(-0.177784\pi\)
\(440\) 0 0
\(441\) 21.0000 1.00000
\(442\) 0 0
\(443\) − 13.1149i − 0.623107i −0.950229 0.311553i \(-0.899151\pi\)
0.950229 0.311553i \(-0.100849\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 46.3337i 2.18177i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −34.0000 −1.58354 −0.791769 0.610821i \(-0.790840\pi\)
−0.791769 + 0.610821i \(0.790840\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −27.1789 −1.24969
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −2.46327 −0.112786
\(478\) 0 0
\(479\) − 41.5083i − 1.89656i −0.317429 0.948282i \(-0.602819\pi\)
0.317429 0.948282i \(-0.397181\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 39.3446i − 1.78288i −0.453143 0.891438i \(-0.649697\pi\)
0.453143 0.891438i \(-0.350303\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −43.8945 −1.94559 −0.972796 0.231665i \(-0.925583\pi\)
−0.972796 + 0.231665i \(0.925583\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 54.3578 2.39065
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 35.1999i 1.53333i
\(528\) 0 0
\(529\) 15.2524 0.663146
\(530\) 0 0
\(531\) 39.3446i 1.70741i
\(532\) 0 0
\(533\) 80.2524 3.47612
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 29.0132i 1.24969i
\(540\) 0 0
\(541\) −11.8945 −0.511386 −0.255693 0.966758i \(-0.582304\pi\)
−0.255693 + 0.966758i \(0.582304\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 15.1568i 0.648058i 0.946047 + 0.324029i \(0.105038\pi\)
−0.946047 + 0.324029i \(0.894962\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 34.2524 1.45132 0.725660 0.688054i \(-0.241535\pi\)
0.725660 + 0.688054i \(0.241535\pi\)
\(558\) 0 0
\(559\) 47.0753i 1.99107i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 37.4245i 1.57725i 0.614872 + 0.788627i \(0.289208\pi\)
−0.614872 + 0.788627i \(0.710792\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 46.2524 1.93900 0.969500 0.245092i \(-0.0788181\pi\)
0.969500 + 0.245092i \(0.0788181\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 13.9173i 0.580391i
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) − 3.40322i − 0.140947i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 8.22860i 0.336212i 0.985769 + 0.168106i \(0.0537650\pi\)
−0.985769 + 0.168106i \(0.946235\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) − 29.1350i − 1.18647i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 94.1505i − 3.80892i
\(612\) 0 0
\(613\) −42.0000 −1.69636 −0.848182 0.529705i \(-0.822303\pi\)
−0.848182 + 0.529705i \(0.822303\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 30.2524 1.21791 0.608957 0.793203i \(-0.291588\pi\)
0.608957 + 0.793203i \(0.291588\pi\)
\(618\) 0 0
\(619\) − 13.1149i − 0.527131i −0.964641 0.263566i \(-0.915101\pi\)
0.964641 0.263566i \(-0.0848986\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 50.2524 1.99107
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 39.3446i 1.55160i 0.630978 + 0.775800i \(0.282654\pi\)
−0.630978 + 0.775800i \(0.717346\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) −54.3578 −2.13373
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 42.8696i 1.66996i 0.550278 + 0.834982i \(0.314522\pi\)
−0.550278 + 0.834982i \(0.685478\pi\)
\(660\) 0 0
\(661\) −31.1789 −1.21272 −0.606359 0.795191i \(-0.707371\pi\)
−0.606359 + 0.795191i \(0.707371\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.30040i 0.0497584i 0.999690 + 0.0248792i \(0.00792011\pi\)
−0.999690 + 0.0248792i \(0.992080\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −5.89454 −0.224564
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 35.5367 1.34605
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 46.0000 1.73740 0.868698 0.495342i \(-0.164957\pi\)
0.868698 + 0.495342i \(0.164957\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 26.2524 0.985928 0.492964 0.870050i \(-0.335913\pi\)
0.492964 + 0.870050i \(0.335913\pi\)
\(710\) 0 0
\(711\) − 39.3446i − 1.47554i
\(712\) 0 0
\(713\) 30.8211 1.15426
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 13.1149i 0.489102i 0.969636 + 0.244551i \(0.0786406\pi\)
−0.969636 + 0.244551i \(0.921359\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 20.8455i 0.770999i
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 40.2524 1.48271
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 54.0035i 1.97588i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 94.1505i 3.39958i
\(768\) 0 0
\(769\) 18.0000 0.649097 0.324548 0.945869i \(-0.394788\pi\)
0.324548 + 0.945869i \(0.394788\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) − 55.3647i − 1.98876i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 39.3446i 1.40248i 0.712923 + 0.701242i \(0.247371\pi\)
−0.712923 + 0.701242i \(0.752629\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −50.0000 −1.77109 −0.885545 0.464553i \(-0.846215\pi\)
−0.885545 + 0.464553i \(0.846215\pi\)
\(798\) 0 0
\(799\) − 41.6910i − 1.47492i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −22.0000 −0.773479 −0.386739 0.922189i \(-0.626399\pi\)
−0.386739 + 0.922189i \(0.626399\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −51.8945 −1.81113 −0.905566 0.424205i \(-0.860553\pi\)
−0.905566 + 0.424205i \(0.860553\pi\)
\(822\) 0 0
\(823\) − 52.6422i − 1.83499i −0.397747 0.917495i \(-0.630208\pi\)
0.397747 0.917495i \(-0.369792\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 13.1149i − 0.456049i −0.973655 0.228024i \(-0.926773\pi\)
0.973655 0.228024i \(-0.0732266\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 22.2524 0.770999
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −10.4633 −0.358256 −0.179128 0.983826i \(-0.557328\pi\)
−0.179128 + 0.983826i \(0.557328\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 26.0000 0.888143 0.444072 0.895991i \(-0.353534\pi\)
0.444072 + 0.895991i \(0.353534\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 54.3578 1.84396
\(870\) 0 0
\(871\) − 69.7191i − 2.36234i
\(872\) 0 0
\(873\) −52.6102 −1.78058
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −48.6102 −1.64145 −0.820724 0.571324i \(-0.806430\pi\)
−0.820724 + 0.571324i \(0.806430\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −35.1789 −1.18521 −0.592604 0.805494i \(-0.701900\pi\)
−0.592604 + 0.805494i \(0.701900\pi\)
\(882\) 0 0
\(883\) − 23.4463i − 0.789031i −0.918889 0.394515i \(-0.870912\pi\)
0.918889 0.394515i \(-0.129088\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) − 37.3027i − 1.24969i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −2.61018 −0.0869575
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 56.7260i 1.88356i 0.336234 + 0.941778i \(0.390847\pi\)
−0.336234 + 0.941778i \(0.609153\pi\)
\(908\) 0 0
\(909\) 45.5367 1.51036
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) −74.6102 −2.46924
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 27.7737i 0.916170i 0.888908 + 0.458085i \(0.151464\pi\)
−0.888908 + 0.458085i \(0.848536\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 16.5181i − 0.542525i
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 24.8211 0.809144 0.404572 0.914506i \(-0.367420\pi\)
0.404572 + 0.914506i \(0.367420\pi\)
\(942\) 0 0
\(943\) − 31.1160i − 1.01328i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 12.5560i − 0.408015i −0.978969 0.204008i \(-0.934603\pi\)
0.978969 0.204008i \(-0.0653968\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −91.6102 −2.95517
\(962\) 0 0
\(963\) 39.3446i 1.26786i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 60.9317i 1.95943i 0.200396 + 0.979715i \(0.435777\pi\)
−0.200396 + 0.979715i \(0.564223\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 62.2929i − 1.99908i −0.0303994 0.999538i \(-0.509678\pi\)
0.0303994 0.999538i \(-0.490322\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 34.0000 1.08776 0.543878 0.839164i \(-0.316955\pi\)
0.543878 + 0.839164i \(0.316955\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −40.6102 −1.29658
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 18.2524 0.580391
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 688.2.g.d.687.1 4
4.3 odd 2 inner 688.2.g.d.687.4 yes 4
8.3 odd 2 2752.2.g.d.2751.1 4
8.5 even 2 2752.2.g.d.2751.4 4
43.42 odd 2 CM 688.2.g.d.687.1 4
172.171 even 2 inner 688.2.g.d.687.4 yes 4
344.85 odd 2 2752.2.g.d.2751.4 4
344.171 even 2 2752.2.g.d.2751.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
688.2.g.d.687.1 4 1.1 even 1 trivial
688.2.g.d.687.1 4 43.42 odd 2 CM
688.2.g.d.687.4 yes 4 4.3 odd 2 inner
688.2.g.d.687.4 yes 4 172.171 even 2 inner
2752.2.g.d.2751.1 4 8.3 odd 2
2752.2.g.d.2751.1 4 344.171 even 2
2752.2.g.d.2751.4 4 8.5 even 2
2752.2.g.d.2751.4 4 344.85 odd 2