Properties

Label 684.2.bg
Level $684$
Weight $2$
Character orbit 684.bg
Rep. character $\chi_{684}(191,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $216$
Newform subspaces $3$
Sturm bound $240$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.bg (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 36 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(240\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(684, [\chi])\).

Total New Old
Modular forms 248 216 32
Cusp forms 232 216 16
Eisenstein series 16 0 16

Trace form

\( 216 q + 6 q^{6} - 22 q^{12} - 30 q^{14} - 16 q^{18} - 8 q^{21} - 28 q^{24} + 108 q^{25} - 24 q^{29} + 36 q^{30} + 60 q^{32} + 22 q^{36} + 20 q^{42} - 40 q^{45} - 14 q^{48} + 108 q^{49} - 78 q^{50} - 18 q^{52}+ \cdots + 76 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(684, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
684.2.bg.a 684.bg 36.h $4$ $5.462$ \(\Q(\zeta_{12})\) None 684.2.bg.a \(-2\) \(0\) \(-6\) \(-12\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+(1-2\zeta_{12}^{2}+\cdots)q^{3}+\cdots\)
684.2.bg.b 684.bg 36.h $4$ $5.462$ \(\Q(\zeta_{12})\) None 684.2.bg.a \(2\) \(0\) \(-6\) \(12\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\zeta_{12}+\zeta_{12}^{2}-\zeta_{12}^{3})q^{2}+(-1+2\zeta_{12}^{2}+\cdots)q^{3}+\cdots\)
684.2.bg.c 684.bg 36.h $208$ $5.462$ None 684.2.bg.c \(0\) \(0\) \(12\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(684, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(684, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 2}\)