Defining parameters
| Level: | \( N \) | \(=\) | \( 6825 = 3 \cdot 5^{2} \cdot 7 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 6825.df (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 35 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Sturm bound: | \(2240\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(6825, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 2288 | 576 | 1712 |
| Cusp forms | 2192 | 576 | 1616 |
| Eisenstein series | 96 | 0 | 96 |
Decomposition of \(S_{2}^{\mathrm{new}}(6825, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(6825, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(6825, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(455, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(525, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1365, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2275, [\chi])\)\(^{\oplus 2}\)