Properties

Label 6800.2.l
Level $6800$
Weight $2$
Character orbit 6800.l
Rep. character $\chi_{6800}(1801,\cdot)$
Character field $\Q$
Dimension $0$
Newform subspaces $0$
Sturm bound $2160$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 6800 = 2^{4} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6800.l (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 136 \)
Character field: \(\Q\)
Newform subspaces: \( 0 \)
Sturm bound: \(2160\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(6800, [\chi])\).

Total New Old
Modular forms 1104 0 1104
Cusp forms 1056 0 1056
Eisenstein series 48 0 48

Decomposition of \(S_{2}^{\mathrm{old}}(6800, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(6800, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(136, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(680, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3400, [\chi])\)\(^{\oplus 2}\)