Defining parameters
Level: | \( N \) | \(=\) | \( 6800 = 2^{4} \cdot 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6800.dw (of order \(8\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 85 \) |
Character field: | \(\Q(\zeta_{8})\) | ||
Sturm bound: | \(2160\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(6800, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 4464 | 656 | 3808 |
Cusp forms | 4176 | 640 | 3536 |
Eisenstein series | 288 | 16 | 272 |
Decomposition of \(S_{2}^{\mathrm{new}}(6800, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(6800, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(6800, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(425, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(680, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(850, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1360, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1700, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3400, [\chi])\)\(^{\oplus 2}\)