Properties

Label 6800.2.cu
Level $6800$
Weight $2$
Character orbit 6800.cu
Rep. character $\chi_{6800}(1361,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $960$
Sturm bound $2160$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 6800 = 2^{4} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6800.cu (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Sturm bound: \(2160\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(6800, [\chi])\).

Total New Old
Modular forms 4368 960 3408
Cusp forms 4272 960 3312
Eisenstein series 96 0 96

Decomposition of \(S_{2}^{\mathrm{new}}(6800, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(6800, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(6800, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(400, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(425, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(850, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1700, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3400, [\chi])\)\(^{\oplus 2}\)