Defining parameters
Level: | \( N \) | \(=\) | \( 6800 = 2^{4} \cdot 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6800.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
Character field: | \(\Q\) | ||
Sturm bound: | \(2160\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(6800, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1116 | 174 | 942 |
Cusp forms | 1044 | 168 | 876 |
Eisenstein series | 72 | 6 | 66 |
Decomposition of \(S_{2}^{\mathrm{new}}(6800, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(6800, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(6800, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(136, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(272, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(425, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(680, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(850, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1360, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1700, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3400, [\chi])\)\(^{\oplus 2}\)