Properties

Label 676.2.w
Level $676$
Weight $2$
Character orbit 676.w
Rep. character $\chi_{676}(7,\cdot)$
Character field $\Q(\zeta_{156})$
Dimension $4272$
Newform subspaces $2$
Sturm bound $182$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 676.w (of order \(156\) and degree \(48\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 676 \)
Character field: \(\Q(\zeta_{156})\)
Newform subspaces: \( 2 \)
Sturm bound: \(182\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(676, [\chi])\).

Total New Old
Modular forms 4464 4464 0
Cusp forms 4272 4272 0
Eisenstein series 192 192 0

Trace form

\( 4272 q - 48 q^{2} - 46 q^{4} - 98 q^{5} - 38 q^{6} - 54 q^{8} - 270 q^{9} - 46 q^{10} - 52 q^{12} - 96 q^{13} - 60 q^{14} - 50 q^{16} - 92 q^{17} - 58 q^{18} - 66 q^{20} - 76 q^{21} - 34 q^{22} - 62 q^{24}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(676, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
676.2.w.a 676.w 676.w $48$ $5.398$ \(\Q(\sqrt{-1}) \) 676.2.w.a \(2\) \(0\) \(-6\) \(0\) $\mathrm{U}(1)[D_{156}]$
676.2.w.b 676.w 676.w $4224$ $5.398$ None 676.2.w.b \(-50\) \(0\) \(-92\) \(0\) $\mathrm{SU}(2)[C_{156}]$