Properties

Label 67.2.e
Level $67$
Weight $2$
Character orbit 67.e
Rep. character $\chi_{67}(9,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $40$
Newform subspaces $3$
Sturm bound $11$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 67 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 67.e (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 67 \)
Character field: \(\Q(\zeta_{11})\)
Newform subspaces: \( 3 \)
Sturm bound: \(11\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(67, [\chi])\).

Total New Old
Modular forms 60 60 0
Cusp forms 40 40 0
Eisenstein series 20 20 0

Trace form

\( 40 q - 6 q^{2} - 3 q^{3} - 8 q^{4} - 5 q^{5} + q^{6} - q^{7} - 23 q^{8} + 3 q^{9} - 32 q^{10} + 3 q^{11} - 12 q^{12} + 9 q^{13} + 11 q^{14} - 11 q^{15} + 14 q^{16} - 29 q^{17} + 16 q^{18} - 10 q^{19}+ \cdots + 112 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(67, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
67.2.e.a 67.e 67.e $10$ $0.535$ \(\Q(\zeta_{22})\) None 67.2.e.a \(-6\) \(-2\) \(3\) \(0\) $\mathrm{SU}(2)[C_{11}]$ \(q+(-1-\zeta_{22}^{2}-\zeta_{22}^{4}+\zeta_{22}^{7}-\zeta_{22}^{8}+\cdots)q^{2}+\cdots\)
67.2.e.b 67.e 67.e $10$ $0.535$ \(\Q(\zeta_{22})\) None 67.2.e.b \(4\) \(3\) \(-9\) \(7\) $\mathrm{SU}(2)[C_{11}]$ \(q+(1-\zeta_{22}+\zeta_{22}^{2}-\zeta_{22}^{3}+\zeta_{22}^{4}+\cdots)q^{2}+\cdots\)
67.2.e.c 67.e 67.e $20$ $0.535$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 67.2.e.c \(-4\) \(-4\) \(1\) \(-8\) $\mathrm{SU}(2)[C_{11}]$ \(q+(-\beta _{9}-\beta _{14})q^{2}-\beta _{19}q^{3}+(-1+\cdots)q^{4}+\cdots\)