Properties

Label 667.6.a
Level 667667
Weight 66
Character orbit 667.a
Rep. character χ667(1,)\chi_{667}(1,\cdot)
Character field Q\Q
Dimension 258258
Newform subspaces 44
Sturm bound 360360
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 667=2329 667 = 23 \cdot 29
Weight: k k == 6 6
Character orbit: [χ][\chi] == 667.a (trivial)
Character field: Q\Q
Newform subspaces: 4 4
Sturm bound: 360360
Trace bound: 11

Dimensions

The following table gives the dimensions of various subspaces of M6(Γ0(667))M_{6}(\Gamma_0(667)).

Total New Old
Modular forms 302 258 44
Cusp forms 298 258 40
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

23232929FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++72726464887171646477110011
++--767665651111757565651010110011
-++-797968681111787868681010110011
--++757561611414747461611313110011
Plus space++14714712512522221451451251252020220022
Minus space-15515513313322221531531331332020220022

Trace form

258q8q2+8q3+4192q416q6188q7876q8+21354q968q10916q11212q12300q13+2288q14+75744q16+3012q17+2220q188784q19+897052q99+O(q100) 258 q - 8 q^{2} + 8 q^{3} + 4192 q^{4} - 16 q^{6} - 188 q^{7} - 876 q^{8} + 21354 q^{9} - 68 q^{10} - 916 q^{11} - 212 q^{12} - 300 q^{13} + 2288 q^{14} + 75744 q^{16} + 3012 q^{17} + 2220 q^{18} - 8784 q^{19}+ \cdots - 897052 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(Γ0(667))S_{6}^{\mathrm{new}}(\Gamma_0(667)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 23 29
667.6.a.a 667.a 1.a 6161 106.976106.976 None 667.6.a.a 24-24 97-97 400-400 243-243 - - SU(2)\mathrm{SU}(2)
667.6.a.b 667.a 1.a 6464 106.976106.976 None 667.6.a.b 12-12 7-7 400-400 243-243 ++ ++ SU(2)\mathrm{SU}(2)
667.6.a.c 667.a 1.a 6565 106.976106.976 None 667.6.a.c 1616 4747 400400 149149 ++ - SU(2)\mathrm{SU}(2)
667.6.a.d 667.a 1.a 6868 106.976106.976 None 667.6.a.d 1212 6565 400400 149149 - ++ SU(2)\mathrm{SU}(2)

Decomposition of S6old(Γ0(667))S_{6}^{\mathrm{old}}(\Gamma_0(667)) into lower level spaces

S6old(Γ0(667)) S_{6}^{\mathrm{old}}(\Gamma_0(667)) \simeq S6new(Γ0(23))S_{6}^{\mathrm{new}}(\Gamma_0(23))2^{\oplus 2}\oplusS6new(Γ0(29))S_{6}^{\mathrm{new}}(\Gamma_0(29))2^{\oplus 2}