Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M6(Γ0(667)).
|
Total |
New |
Old |
Modular forms
| 302 |
258 |
44 |
Cusp forms
| 298 |
258 |
40 |
Eisenstein series
| 4 |
0 |
4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
23 | 29 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | | 72 | 64 | 8 | | 71 | 64 | 7 | | 1 | 0 | 1 |
+ | − | − | | 76 | 65 | 11 | | 75 | 65 | 10 | | 1 | 0 | 1 |
− | + | − | | 79 | 68 | 11 | | 78 | 68 | 10 | | 1 | 0 | 1 |
− | − | + | | 75 | 61 | 14 | | 74 | 61 | 13 | | 1 | 0 | 1 |
Plus space | + | | 147 | 125 | 22 | | 145 | 125 | 20 | | 2 | 0 | 2 |
Minus space | − | | 155 | 133 | 22 | | 153 | 133 | 20 | | 2 | 0 | 2 |
Decomposition of S6new(Γ0(667)) into newform subspaces
Decomposition of S6old(Γ0(667)) into lower level spaces