Defining parameters
| Level: | \( N \) | \(=\) | \( 6664 = 2^{3} \cdot 7^{2} \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 6664.bg (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 476 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 0 \) | ||
| Sturm bound: | \(2016\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(6664, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 2080 | 0 | 2080 |
| Cusp forms | 1952 | 0 | 1952 |
| Eisenstein series | 128 | 0 | 128 |
Decomposition of \(S_{2}^{\mathrm{old}}(6664, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(6664, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(476, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3332, [\chi])\)\(^{\oplus 2}\)